
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Quantum Assisted Secure Multiparty Computation

Manuel Maria Trigueiros Sampaio Batalha dos Santos

Supervisor: Doctor Paulo Alexandre Carreira Mateus
Co-Supervisor: Doctor Armando Nolasco Pinto

Thesis specifically prepared to obtain the PhD Degree in
Information Security

Draft

December 2023

ii

Abstract

Quantum cryptography is a field of study that utilizes the properties of quantum physics

to develop cryptographic primitives that are beyond the reach of classical cryptography.

Its main objective is to improve existing classical implementations and to introduce new

cryptographic methods that can withstand the power of quantum computers. While

much of the research in this field has focused on quantum key distribution (QKD), there

have been important advances in the understanding and development of other two-party

primitives such as quantum oblivious transfer (QOT). QOT protocols, having a similar

structure to QKD protocols, allow for quantum-safe computation. However, the condi-

tions under which QOT is fully quantum-safe are still under intense scrutiny. The thesis

begins by surveying the work done on the concept of oblivious transfer within theoretical

quantum cryptography, highlighting proposed protocols and their security requirements,

discussing impossibility results, and examining quantum security models in which QOT

security can be proven.

The most significant application of oblivious transfer (OT) is in the realm of secure

multiparty computation (SMC). This technology has the potential to revolutionize fields

such as data analysis and computation by enabling multiple parties to compute virtually

any function while maintaining the privacy of their inputs. However, the security and

efficiency of SMC protocols are heavily dependent on the security and efficiency of OT.

To address this, the thesis conducts a detailed comparison of the complexity of quantum

oblivious transfer based on oblivious keys and two of the fastest classical OT protocols.

This comparison provides insight into the potential benefits and limitations of using quan-

tum techniques in SMC.

Building on the theoretical comparison of quantum and classical approaches to oblivi-

ous transfer, the thesis integrates and compares both within an SMC system for genomic

analysis. The proposed system utilizes quantum cryptographic protocols to compute

a phylogenetic tree from a set of private genome sequences. This system significantly

improves the privacy and security of the computation by incorporating three quantum

cryptographic protocols that provide enhanced security against quantum computer at-

tacks. The system adapts several distance-based methods, such as the Unweighted Pair

iii

Group Method with Arithmetic mean (UPGMA), Neighbour-Joining (NJ), and Fitch-

Margoliash (FM), into a private setting where the sequences owned by each party are not

disclosed to other members. The performance and privacy guarantees of the system are

evaluated theoretically through a complexity analysis and a security proof. Additionally,

the thesis provides an extensive explanation of the implementation details and crypto-

graphic protocols used. The implementation of quantum-assisted secure phylogenetic tree

computation is based on the Libscapi implementation of the Yao protocol, the PHYLIP

library, and simulated keys of two quantum systems: quantum oblivious key distribution

and quantum key distribution. The implementation is benchmarked against a classical-

only solution, and the results indicate that both approaches have similar execution times,

with the only difference being the time overhead taken by the oblivious key management

system of the quantum-assisted approach.

Finally, the thesis presents the first quantum protocol for oblivious linear evaluation.

Oblivious linear evaluation is a generalization of oblivious transfer, where two distrustful

parties, Alice and Bob, obliviously compute a linear function, f(x) = ax + b, without

revealing their inputs to each other. Alice inputs the function coefficients, a and b, and

Bob inputs the function input, x. The output, f(x), is only delivered by Bob. This

primitive is essential for arithmetic-based secure multiparty computation protocols from

a structural and security point of view. In the classical setting, it is known that oblivious

linear evaluation can be generated based on oblivious transfer, and quantum counterparts

of these protocols can, in principle, be constructed as straightforward extensions based on

quantum oblivious transfer. However, the thesis presents a novel quantum protocol for

oblivious linear evaluation that does not rely on quantum oblivious transfer. The protocol

is first presented for the semi-honest setting and then extended to the dishonest setting

using a commit-and-open strategy. The protocol uses high-dimensional quantum states

to compute the linear function obliviously, f(x), on Galois fields of prime dimension,

GF (d) ∼= Zd, or prime-power dimension, GF (dM). The protocol utilizes a complete set of

mutually unbiased bases in prime-power dimension Hilbert spaces and their linear behav-

ior upon the Heisenberg-Weyl operators. The protocol is also generalized to achieve vector

oblivious linear evaluation, which increases efficiency by generating several instances of

oblivious linear evaluation. The security of the protocol is proven in the framework of

quantum universal composability.

Key-words: quantum cryptography, quantum oblivious transfer, quantum oblivious

linear evaluation, secure multiparty computation.

iv

Resumo

A criptografia quântica é o campo da criptografia que explora as propriedades quânticas da

matéria. Geralmente, visa desenvolver primitivas fora do alcance da criptografia clássica e

melhorar as implementações clássicas existentes. Embora grande parte do trabalho neste

campo se foque na distribuição de chaves quânticas (quantum key distribution, QKD),

também têm existido desenvolvimentos cruciais para a compreensão e desenvolvimento

de outras primitivas criptográficas, como a transferência obĺıvia quântica (quantum obliv-

ious transfer, QOT). Pode-se mostrar a semelhança entre a estrutura de aplicação das

primitivas QKD e QOT. Assim como os protocolos QKD permitem comunicação com

segurança quântica, os protocolos QOT permitem computação com segurança quântica.

No entanto, as condições sobre as quais o QOT é totalmente seguro têm sido sujeitas

a um intenso estudo. Nesta tese, começamos por fazer um levantamento do trabalho

desenvolvido em torno do conceito de OT dentro da criptografia quântica teórica. Aqui

concentramo-nos em alguns protocolos propostos e nos seus requisitos de segurança. Re-

visitamos os resultados de impossibilidade desta primitiva e discutimos vários modelos

quânticos de segurança sob os quais é posśıvel provar a segurança do QOT.

A aplicação mais famosa do OT está no domı́nio da computação multipartidária segura

(secure multiparty computation, SMC). Esta tecnologia tem o potencial de ser disruptiva

nas áreas de análise e computação de dados. Esta permite que vários participantes cal-

culem um certa função, preservando a privacidade dos seus dados. No entanto, a maior

parte da segurança e eficiência dos protocolos SMC dependem da segurança e eficiência do

OT. Por esta razão, fazemos uma comparação detalhada entre a complexidade da QOT

baseada em chaves obĺıvias e dois dos protocolos OT clássicos mais rápidos.

Seguindo a comparação teórica entre OT quântico e clássico, integramos e compara-

mos ambas as abordagens dentro de um sistema SMC baseado na análise de sequências

genéticas. Em resumo, propomos um sistema SMC auxiliado por protocolos criptográficos

quânticos com o objectivo de computar uma árvore filogenética a partir de um conjunto

de sequências genéticas privadas. Este sistema melhora significativamente a privacidade e

a segurança da computação graças a três protocolos criptográficos quânticos que fornecem

segurança aprimorada contra ataques de computadores quânticos. Este sistema adapta

v

vários métodos baseados em distância (Unweighted Pair Group Method with Arithmetic

mean, Neighbour-Joining, Fitch-Margoliash) num ambiente privado onde as sequências

de cada participante não são divulgadas aos demais membros presentes no protocolo.

Avaliamos teoricamente as garantias de desempenho e privacidade do sistema através de

uma análise de complexidade e prova de segurança, e fornecemos uma extensa explicação

dos detalhes de implementação e protocolos criptográficos. Implementamos este sistema

com base na implementação Libscapi do protocolo de Yao, na biblioteca PHYLIP e em

chaves simuladas de dois sistemas quânticos: distribuição de chaves obĺıvias quânticas

e distribuição de chaves quânticas. Comparamos esta implementação com uma solução

somente clássica e conclúımos que ambas as abordagens apresentam tempos de execução

semelhantes. A única diferença entre os dois sistemas é a sobrecarga de tempo tomada

pelo sistema de gestão de chaves obĺıvias da abordagem quântica.

Finalmente, apresentamos o primeiro protocolo quântico de avaliação linear obĺıvia

(oblivious linear evaluation, OLE). O OLE é uma generalização do OT, em que dois par-

ticipantes calculam de forma obĺıvia uma função linear, f(x) = ax + b. Ou seja, cada

participante fornece os seus dados de forma privada, a fim de calcular o resultado f(x)

que se torna conhecido por apenas um deles. Do ponto de vista estrutural e de segurança,

o OLE é fundamental para protocolos SMC baseados em circuitos aritméticos. No caso

clássico, sabe-se que o OLE pode ser gerado com base no OT, e as contrapartes quânticas

desses protocolos podem, em prinćıpio, ser constrúıdas como extensões directas baseadas

em QOT. Aqui, apresentamos o primeiro, protocolo quântico OLE que não depende de

QOT. Começamos apresentando um protocolo semi-honesto e depois estendemo-lo para

o cenário desonesto através de uma estratégia commit-and-open. O nosso protocolo usa

estados quânticos para calcular a função linear, f(x), em corpos de Galois de dimensão

prima, GF (d) ∼= Zd, ou dimensão de potência prima, GF (dM). Estas construções uti-

lizam a existência de um conjunto completo de mutually unbiased bases em espaços de

Hilbert de dimensão de potência prima e o seu comportamento linear sobre os operadores

de Heisenberg-Weyl. Também generalizamos o nosso protocolo para obter uma versão

vectorial do OLE, onde são geradas várias instâncias de OLE, tornando o protocolo mais

eficiente. Provamos que os protocolos têm segurança estática no âmbito da composição

universal quântica.

Palavras-chave: criptografia quântica, transferência obĺıvia quântica, avaliação linear

obĺıvia quântica, computação multipartidária segura.

vi

Acknowledgments

I am deeply grateful to my advisors, Paulo Mateus and Armando Nolasco Pinto, for their

guidance and support throughout the course of this research. Their expertise and insight

have been invaluable in shaping the direction and outcome of this thesis.

I am also grateful for the valuable contributions of my colleagues, who have provided me

with valuable insights and knowledge throughout this research. Special recognition goes

to Chrysoula Vlachou for her stimulating discussions and Pedro Branco for his expertise

on the UC framework and other crypto-related topics. Their guidance and support have

been instrumental in shaping this research and making this journey a success.

I would like to extend my appreciation to my friends Francisco Gomes, Gonçalo San-

tos, José Reis and Tomás Lobão, who have been a constant source of support and en-

couragement throughout my research journey. As the Latin saying goes, ”Veræ amicitiæ

sempiternæ sunt” (Cicero, ”De Amicitia”). I also want to express my deep gratitude to

my family, particularly my wife Teresinha and my children Henrique and Helena, for their

unwavering love and support. This thesis is dedicated to them.

I acknowledge Fundação para a Ciência e a Tecnologia (FCT, Portugal) for its support through the

PhD grant SFRH/BD/144806/2019 in the context of the Doctoral Program in the Information Security

(IS). I also acknowledge support from the project QuantaGenomics funded within the QuantERA II

Programme that has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No 101017733, and with funding organisations, The Foundation for

Science and Technology – FCT (QuantERA/0001/2021), Agence Nationale de la Recherche - ANR, and

State Research Agency – AEI; and in part by AIT—Austrian Institute of Technology GmbH and 37

Further Beneficiaries of OpenQKD (Project number 857156, Action QuGenome).

vii

viii

I dedicate this thesis to my loving wife Teresinha and my two children Henrique and

Helena who came to life during this journey to help me finish it.

ix

x

Contents

Abstract . iii

Resumo . v

Acknowledgements . vii

List of Figures . xv

List of Tables . xvii

List of Abbreviations . xix

Notation . xxii

1 Introduction 1

2 Technical overview 7

2.1 Mathematical preliminaries . 7

2.2 Secure multiparty computation . 8

2.2.1 Garbled circuit approach . 9

2.2.2 Secret sharing approach . 13

2.3 Quantum information . 15

2.3.1 Trace distance . 16

2.3.2 Entropy . 17

2.3.3 Two-universal functions . 21

2.4 Universal composability . 22

2.5 Conclusion . 25

3 Quantum oblivious transfer 27

3.1 Impossibility results . 28

3.2 BBCS-based protocols . 29

3.2.1 BBCS protocol . 30

3.2.2 BBCS in the FCOM−hybrid model 32

3.2.3 BBCS in the limited-quantum-storage model 35

3.2.4 Bounded-quantum-storage model 36

3.2.5 Noisy-quantum-storage model . 37

xi

3.2.6 Experimental attacks . 40

3.3 Conclusion . 45

4 Classical and quantum oblivious transfer 47

4.1 Classical oblivious transfer . 48

4.1.1 Security issues . 49

4.1.2 Efficiency issues . 50

4.1.3 OT extension protocols . 53

4.2 Oblivious transfer complexity analysis . 54

4.2.1 Optimization . 54

4.2.2 Classical OT . 56

4.2.3 OT extension . 57

4.3 Conclusion . 63

5 Private phylogenetic trees 65

5.1 Phylogenetic trees . 66

5.1.1 Evolutionary distances . 67

5.1.2 Distance-based algorithms . 70

5.2 Security definition . 73

5.2.1 Distance matrix functionality . 75

5.3 Quantum tools . 75

5.3.1 Quantum oblivious key distribution 76

5.3.2 Quantum random number generator 76

5.3.3 Quantum key distribution . 78

5.4 Software tools . 79

5.4.1 CBMC-GC . 79

5.4.2 Libscapi . 79

5.4.3 PHYLIP . 79

5.5 Secure multiparty computation of phylogenetic trees 79

5.5.1 Functionality definition . 80

5.5.2 Private protocol . 81

5.5.3 Quantum private protocol . 82

5.6 Quantum technologies integration . 83

5.6.1 Quantum oblivious transfer . 83

5.6.2 Quantum random number generation 84

5.6.3 Quantum key distribution . 84

5.6.4 Quantum network integration . 85

5.7 System security . 86

xii

5.7.1 Private computation of distances 86

5.7.2 Private computation of phylogenetic trees 89

5.8 Complexity analysis . 91

5.8.1 Protocol complexity analysis . 91

5.8.2 Use case . 93

5.9 Performance evaluation . 95

5.9.1 Setup . 95

5.9.2 Circuit generation . 96

5.9.3 System execution time . 96

5.10 Conclusion . 100

6 Quantum oblivious linear evaluation 101

6.1 Contributions overview . 102

6.1.1 Organization . 105

6.2 Mutually unbiased bases . 105

6.3 Semi-honest QOLE protocol . 108

6.4 QOLE protocol . 110

6.4.1 RWOLE phase . 110

6.4.2 Post-processing phase . 112

6.5 UC security . 119

6.6 Protocol generalizations . 124

6.6.1 QOLE in Galois fields of prime-power dimensions 124

6.6.2 Quantum vector OLE . 126

6.7 Conclusion . 129

7 Conclusion 131

7.1 Future work . 132

A Jukes-Cantor distance for CBMC-GC 135

B Proof of Lemma 14 (Dishonest Bob) 139

Bibliography 174

xiii

xiv

List of Figures

2.1 OT functionality. 10

2.2 Boolean circuit of the Millionaires’ Problem. Optimised circuit according

to the construction in [1]. 11

2.3 OLE functionality. 13

2.4 VOLE functionality. 14

2.5 Commitment functionality. 24

3.1 BBCS OT protocol. 31

3.2 BBCS OT protocol in the FCOM−hybrid model. 33

3.3 BBCS OT protocol in the bounded-quantum-storage model. 36

3.4 BBCS OT protocol in the noisy-quantum-storage model. 39

3.5 Alice faked-state attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols. 41

3.6 Alice trojan-horse attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols. 42

3.7 Bob trojan-horse attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols. 43

4.1 Bellare-Micali classical OT protocol divided into two phases [2]. 48

4.2 Plot of expression (4.1) on the overestimation of OT rate against the num-

ber of modular exponentiation operations required per OT. 52

4.3 Transfer phase of BBCS-based QOT protocols in the FCOM−hybrid model

and bounded-quantum-storage model. 54

4.4 Transfer phase of BBCS-based QOT protocols in the FCOM−hybrid model

and bounded-quantum-storage model. 55

4.5 Precomputation and transfer phases of OT extensions protocol presented

in [3]. 58

4.6 Precomputation and transfer phases of OT extensions protocol presented

in [4]. 62

5.1 QOKD protocol in the bounded-quantum-storage model. 77

5.2 Example of rooted phylogenetic tree. 81

5.3 Overview of the Aad network structure. 82

xv

5.4 Overview of the integration of the QOKD service and the CBMC-GC tool

in the Yao protocol. 84

5.5 Overview of the tailored divide-and-conquer technique. This corresponds

to lines 12-19 in Figure A.1 in Appendix A. 88

5.6 Total running time of both quantum-assisted and classical-only systems. 98

5.7 Total running time of the pairwise SMC computation of distances for both

quantum-assisted and classical-only systems. 99

5.8 The proportion of the quantum-assisted system’s overhead that is attributable

to the Oblivious Key Management System (OKMS). 99

6.1 Semi-honest QOLE protocol. 109

6.2 RWOLE protocol. 111

6.3 WOLE protocol. 113

6.4 Extraction protocol. 117

6.5 QOLE protocol. 119

6.6 Simulator SA against dishonest Alice. 121

6.7 Simulator SB against dishonest Bob. 123

6.8 Extraction protocol for VOLE. 128

A.1 Jukes-Cantor distance C code for CBMC-GC boolean circuit generation. 137

xvi

List of Tables

4.1 Number of modular exponentiations in the BM protocol for each phase. . 51

4.2 Number of modular exponentiation operations and communication rounds

executed during the transfer phase of four classical protocols. 56

4.3 Computational complexity comparison between ALSZ13 [3] OT extension

protocol and ΠBBCS
O protocol from section 4.2.1. 59

4.4 Communication complexity comparison between ALSZ13 [3] OT extension

protocol and ΠBBCS
O protocol from section 4.2.1. 59

4.5 Computational complexity comparison between KOS15 [4] OT extension

protocol and ΠBBCS
O protocol from section 4.2.1. 61

4.6 Communication complexity comparison between KOS15 [4] OT extension

protocol and ΠBBCS
O protocol from section 4.2.1. 61

5.1 Complexity analysis where n = 3, M = 10, s = 32 000 and l, κ = 128.

Ljok: size of total oblivious key. Ljbok: total size of oblivious key for base

OT. LjQRNG: random bits generated by QRNG. Ljqkd: total size of QKD

keys. N j
Yao: number of Yao protocol executions. N j

OT: number of OT

executions. N j
bOT: number of base OT executions. N j

int: number of internal

computations. 94

5.2 Generation of Jukes-Cantor boolean circuit. Min. Time: Minimization

Time. 96

5.3 Percentage weight of each component in the classical-only system. 97

5.4 Percentage weight of each component in the quantum-assisted system. . . 97

xvii

xviii

List of Abbreviations

AES – Advanced encryption standard.

ALSZ13 – OT extension protocol developed by Gilad Asharov, Yehuda Lindell, Thomas

Schneider, and Michael Zohner [3].

API – Application programming interface.

BB84 – Quantum key distribution protocol developed by Charles Bennet and Gilles Bras-

sard in 1984 [5].

BBCS – Quantum oblivious transfer protocol developed by Bennet, Brassard, Crépeau

and Skubiszewska [6].

BCJL – Quantum bit commitment protocol developed by Brassard, Crépeau, Jozsa and

Langlois [7].

BGW – Secure multiparty computation protocol developed by Ben-Or, Goldwasser and

Wigderson [8].

BM – Oblivious transfer protocol developed by Bellare and Micali [2].

BMR – Secure multiparty computation protocol developed by Beaver, Micali and Rog-

away [9].

BQS – Bounded-quantum-storage model.

BQS-UC – Bounded-quantum-storage universal composability model.

CBMC-GC – C Bounded model checker - Garbled Circuit.

CCD – Secure multiparty computation protocol developed by Chaum, Crépeau and

Damgárd [10].

xix

COM – Commitment.

CP – Completely positive map.

CPTP – Completely positive trace preserving map.

CPU – Central processing unit.

CRS – Common reference string.

CSRNG – Cryptographically secure pseudorandom number generator.

DI – Device independent.

EGL – Even, Goldreich, Lempel.

F84 – Evolutionary distance developed by Felsenstein.

FSA – Faked-state attacks.

GDPR – General data protection regulation.

GISAID – Global initiative on sharing avian influenza data.

GMW – Secure multiparty computation protocol developed by Goldreich, Micali and

Wigderson [11].

GWAS – Genome-wide association studies.

HyCC – Compilation of hybrid protocols developed in [12].

JC – Jukes-Cantor.

K2P – Kimura 2-parameter.

KOS15 – OT extension protocol developed by Keller, Orsini and Scholl [4].

LAN – Local area network.

LD – LogDet.

LWE – Learning with errors.

xx

M-LWE – Module learning with errors.

MDI – Measurement device independent.

MMH – Multi-linear modular hashing.

MUB – Mutually unbiased bases.

NP – Oblivious transfer protocol developed by Naor and Pinkas [13].

NQS – Noisy quantum storage model.

NTRU – Number theory research unit.

OKM – Oblivious key management system.

OLE – Oblivious linear evaluation.

OT – Oblivious transfer.

PDQ – Private database queries.

PET – Privacy-enhancing technologies.

PHYLIP – Phylogeny inference package.

POVM – Positive operator-valued measure.

PRG – Pseudorandom generator.

QBC – Quantum bit commitment.

QKD – Quantum key distribution.

QOKD – Quantum oblivious key distribution.

QOLE – Quantum oblivious linear evaluation.

QOT – Quantum oblivious transfer.

QRNG – Quantum random number generator.

xxi

quantum-UC – Quantum universal composability model.

RNG – Random number generator.

RSA – Public-key cryptosystem developed by Rivest, Shamir and Adleman [14].

RWOLE – Random weak oblivious linear evaluation.

SARS-CoV-2 – Severe acute respiratory syndrome coronavirus 2.

SHA – Secure hash algorithm.

SMC – Secure multiparty computation.

THA – Trojan-horse attack.

UC – Universal composability model.

UPGMA – Unweighted pair group method with arithmetic mean.

VM – Virtual machine.

VOLE – Vector oblivious linear evaluation.

WOLE – Weak oblivious linear evaluation.

WSE – Weak string erasure.

xxii

Notation

General

Zq Set of integers a mod q.

gcd(a, b) Greatest common divisor between integers a and b.

Z∗q Set of integers a ∈ Zq that are coprime with q, i.e. gcd(a, q) = 1.

|I| Size of a set I.

T̄ Complement of set T .

s←$ I s is drawn uniformly at random from the set I.

v|J Subvector of v restricted to the indices i ∈ J .

[m] The ordered set {1, 2, . . . ,m} for m ∈ Zq.

[m,n] The ordered set {m,m + 1, . . . , n − 1, n} for m,n ∈ Zq such that

m < n.

dH(x,y) Hamming distance given by |{i : xi 6= yi}| for x,y ∈ Znq .

rH(x,y) The relative Hamming distance given by dH(x,y)/n.

µ(n) Negligible function.

log Natural logarithm.

logd Logarithm with base d.

Ex[f(x)] Expectation of f(x) over random choices of x.

dim Dimension.

xxiii

Classical information

µX Average value of elements in set X.

I(A) Amount of information some event A.

H(X) Shannon entropy of random variable X.

hd(x) d-ary entropy function.

Hmin(X) Min-entropy of classical random variable X.

F Two-universal hash family.

Quantum information

HA (H∗A) Hilbert space (its dual) of quantum system A.

〈φ|ψ〉 Scalar product of the vectors |φ〉 and |ψ〉.

|φ〉 〈φ| Projector onto the vector |φ〉.

ρ, σ Density operators.

|Ba,b〉 Generalised Bell states.

τX Uniform distribution over X .

S1(H) Set of normalized vectors on H.

Herm(H) Sets of hermitian operators on H.

Pos(H) Sets of positive-semi definite on H.

P(H) The sets density operators on H.

δ(ρ, σ) Trace distance between ρ and σ.

1 Identity operator.

tr(ρ) Trace of the hermitian operator ρ.

rank(ρ) Rank of the hermitian operator ρ.

E , T , C, O(), M CPTP maps.

xxiv

Hmin(X|B)ρ Conditional min-entropy of a cq-state ρXB.

Hmin(A|B)ρ|σ Min-entropy of ρAB relative to σB.

Secure multiparty computation

Pi Party i.

PTTP Third trusted party.

Enck Symmetric encryption method with key k.

⊥ Empty string/element.

F Ideal functionality.

FOT OT functionality.

FOLE OLE functionality.

FVOLE VOLE functionality.

FCOM COM functionality.

Fext External functionality.

FFakeCOM Fake commitment functionality.

Π Protocol.

Z Environment.

Adv Adversary.

S Simulator.

SA Simulator against dishonest Alice.

SB Simulator against dishonest Bob.

EXECπC ,Adv,Z The output of the environment Z at the end of the real execution,

and by C the corrupted party.

EXECρC ,S,Z The output of the environment Z at the end of the ideal execution,

and by C the corrupted party.

DMd Distance matrix functionality.

xxv

Dd Two-party distance functionality.

A Phylogenetic tree functionality.

Protocols

mi Alice’s messages.

b Bob’s bit choice.

l Length of OT protocol messages.

κ Symmetric security parameter.

θA, θB Alice and Bob’s bases vectors.

ok Oblivious key.

okA Alice’s oblivious key.

okA Bob’s oblivious key.

eB Bob’s signal string.

pki Public key.

T Test set.

∆t Waiting time.

ν Fraction of the transmitted qubits kept by the adversary.

cN Classical capacity of quantum channel N .

Aqok(J) Alice’s quantum hacking procedure.

Bqok(J) Bob’s quantum hacking procedure.

ΠBBCS
FCOM

BBCS protocol in the FCOM−hybrid model.

ΠBBCS
bqs BBCS protocol in the BQS model.

ΠBBCS
nqs BBCS protocol in the NQS model.

ΠBBCS
O Optimised BBCS protocol.

ΠQOKD
bqs Quantum oblivious key distribution protocol in the BQS model.

xxvi

ΠA
FSA Alice’s faked-state attack on qubits indexed by J .

ΠA
THA Alice’s trojan-horse attack on qubits indexed by J .

ΠB
THA Bob’s trojan-horse attack on qubits indexed by J .

BALSZ13
op Number of binary operations executed by ALSZ13 protocol.

BBBCS
op Number of binary operations executed by ΠBBCS

O protocol.

BKOS15
op Number of binary operations executed by KOS15 protocol.

Aad Private phylogenetic tree algorithm for distance d and algorithm a.

M Number of genomic sequences.

s Length of genomic sequences.

Ljok Size of total oblivious key.

Ljbok Total size of oblivious key for base OT.

LjQRNG Random bits generated by QRNG.

Ljqkd Total size of QKD keys.

N j
Yao Number of Yao protocol executions.

N j
OT Number of OT executions.

N j
bOT Number of base OT executions.

N j
int Number of internal computations.

V b
a Heisenberg-Weyl operators.

|exr 〉 r−th eigenket of the V x
1 operator.

F0 Random variable for Alice’s functions in the RWOLE protocol.

F Random variable for Alice’s functions in the WOLE protocol.

A′ Dishonest Alice quantum system.

B′ Dishonest Bob quantum system.

Πn
RWOLE RWOLE protocol.

Πn
WOLE WOLE protocol.

ΠEXT Extraction protocol.
xxvii

ΠVEXT Vector extraction protocol.

ΠQOLE Quantum OLE protocol.

ΠQVOLE Quantum vector OLE protocol.

xxviii

Chapter 1

Introduction

The field of data mining and data analysis has seen significant advancements with the

increasing power of computers [15]. However, the need for large-scale data collection

can lead to the compromise of sensitive and private information, particularly in fields

such as genomics [16–19]. As a result, the aggregation of data from different sources is

often restricted by laws and regulations such as the General Data Protection Regulation

(GDPR) [20]. While these regulations aim to protect individuals’ privacy, they also limit

the ability of honest parties to access the data needed to address important societal issues.

Secure multiparty computation

To address the privacy concerns outlined above, various privacy-enhancing technologies

have been proposed, such as secure multiparty computation (SMC) [21–23]. SMC enables

a group of n parties, denoted as Pi, to jointly compute a function f(x1, ..., xn) = (y1, ..., yn)

without revealing their inputs to the other parties. The security requirements of SMC

are equivalent to an ideal scenario, where each party Pi sends their inputs to a separate,

trusted third party, who then computes f() and returns the corresponding output to each

party.

The research area of SMC has been greatly advanced with the development of vari-

ous protocols and frameworks [24–26]. These protocols can be broadly classified into two

categories: those based on boolean circuits and those based on arithmetic circuits. The ef-

ficiency and security of SMC protocols rely heavily on the efficiency and security of impor-

tant cryptographic primitives, such as oblivious transfer (OT) for boolean-based protocols

and oblivious linear evaluation (OLE) for arithmetic-based protocols [23, 27]. However,

a fundamental limitation of these primitives is their reliance on public-key cryptography,

as proven by Impagliazzo and Rudich [28]. This dependence on public-key cryptography

is a significant drawback in terms of both performance and security, as it requires more

1

computational resources and is vulnerable to attacks from quantum computers, as demon-

strated by Shor’s algorithm [29]. To address these issues and ensure the safe deployment

of SMC methods in the face of quantum computing, it is crucial to develop SMC methods

that are secure against quantum attacks while maintaining state-of-the-art performance

levels.

A quantum era

The second quantum revolution is upon us and quantum technology has advanced to

a point where we can integrate its unique features into complex engineering systems.

Quantum cryptography, in particular, has been a major area of focus, with research

aiming to develop protocols that offer advantages over their classical counterparts. As

outlined in [30, 31], these advantages can take two forms:

1. Improving security requirements and achieving information-theoretically secure pro-

tocols or those that require fewer computational assumptions;

2. Developing new cryptographic primitives that were previously unattainable using

classical techniques.

While quantum key distribution (QKD) is the most well-known application of quantum

cryptography, other cryptographic tasks such as bit commitment [32], coin flipping [33],

delegated quantum computation [34], position verification [35], and password-based iden-

tification [36, 37] among others, also play important roles in this field.

Also, the intrinsic randomness provided by quantum phenomena can be leveraged

to develop quantum communication protocols for oblivious transfer (OT) [6]. Impor-

tantly, there is a significant difference between classical and quantum OT from a security

standpoint, as the latter can be achieved with only the assumption of the existence of

quantum-hard one-way functions [38, 39]. This means quantum OT requires less security

assumptions than classical OT, as the latter cannot be based on one-way functions alone

[40, 41]. Furthermore, these quantum protocols often possess the desirable property of

everlasting security, which guarantees information-theoretic security after the execution

of the protocol [42]. This greatly improves the security of SMC protocols, allowing them

to rely on symmetric cryptography and one-way functions, and to possess the important

feature of everlasting security. With regards to the oblivious linear evaluation (OLE)

primitive, it is known that it can be reduced to OT [27] through classical methods that

do not require additional assumptions. Therefore, it seems natural to use quantum OT

to generate quantum-secure OLE instances.

2

Contributions

Despite the many advances, the adoption of quantum cryptography in secure multiparty

computation (SMC) systems has been limited due to the efficiency challenges posed by

quantum technology and the need for high throughput of both OT and OLE primitives

in boolean- and arithmetic-based SMC.

The aim of this thesis is to further the adoption of quantum cryptography in SMC sys-

tems through three key contributions. The first contribution involves a study comparing

the efficiency of classical and quantum protocols. The second contribution is the imple-

mentation of a specialized SMC system for genomics analysis utilizing quantum OT. The

final contribution is the development of the first quantum OLE protocol that does not

rely on OT. Additionally, we have also created a comprehensive review dedicated solely

to quantum OT protocols, which is often overlooked in broader surveys on the topic of

“quantum cryptography”. We describe the contributions in a bit more detail.

Efficiency of classical and quantum OT protocols. As far as we are aware, there

is no comparative study on the efficiency of quantum and classical approaches. This is

largely due to two factors. From a theoretical perspective, the use of different types of

information (quantum and classical) makes it challenging to establish a fair comparison

based on the complexity of the protocols. From a practical perspective, there is also a

significant gap in the technological maturity between quantum and classical techniques.

Quantum technology is still in its early stages, whereas classical processors and commu-

nication have undergone decades of development.

We compare the complexity and efficiency of classical and quantum protocols, despite

their constraints. Both types of protocols can be broken down into two phases: precompu-

tation and transfer. The precomputation phase is independent of the parties’ inputs and

is used to generate the resources needed in the transfer phase, which takes into account

the parties’ inputs. This phase may not be as efficient as the transfer phase, so for com-

parison purposes, we focus on the transfer phase. Notably, the transfer phase of quantum

OT only involves classical communication, making it possible and fair to compare it to

the transfer phase of classical protocols.

We compare the complexity of the transfer phase of two classical OT extension pro-

tocols [3, 4] and an optimized quantum OT protocol in detail. Our conclusion is that

the transfer phase of quantum OT is on par with its classical counterparts and has the

potential to be more efficient.

Quantum assisted secure multiparty computation. In light of individuals’ privacy

concerns and legal regulations, it is crucial to handle and study genomic data using

3

highly secure privacy-preserving techniques. We propose a practical secure multiparty

computation (SMC) system that utilizes quantum cryptographic protocols to compute a

phylogenetic tree from a set of private genome sequences. This system applies several

distance-based methods, such as Unweighted Pair Group Method with Arithmetic mean,

Neighbour-Joining, and Fitch-Margoliash, in a private setting where the sequences owned

by each party are not revealed to other members during the protocol. Instead of using

a generic SMC implementation for phylogenetic trees, we develop a specialized private

protocol that improves efficiency for this specific use case.

We conduct a theoretical evaluation of the performance and privacy guarantees of our

proposed system, providing a complexity analysis and security proof. We also provide a

detailed explanation of the implementation details and cryptographic protocols used. We

demonstrate the effectiveness and practicality of our quantum-assisted secure phylogenetic

tree computation by implementing it using the Libscapi implementation of the Yao proto-

col, the PHYLIP library and simulated keys of two quantum systems: quantum oblivious

key distribution and quantum key distribution. 1 We compare our implementation with

a classical-only solution and find that both approaches have similar execution times. The

only difference between the quantum and classical systems is the time overhead taken by

the quantum-assisted approach for oblivious key management.

Quantum oblivious linear evaluation protocol. Our last contribution is a quantum

protocol for OLE that provides quantum-UC security in the FCOM−hybrid model, which

assumes the availability of a commitment functionality, FCOM. To ensure security, we

leverage the properties of Mutually Unbiased Bases in high-dimensional Hilbert spaces

with prime and prime-power dimensions. This approach is motivated by recent theoretical

and experimental advancements in quantum cryptography [43–47] that have opened the

door for new solutions in the field.

As far as we are aware, our protocol is the first to propose a quantum-UC secure

quantum OLE. Furthermore, it does not rely on any quantum OT implementation, which

is a common approach. We design the protocol to handle static corruption adversarial

model for both semi-honest and malicious adversaries. Additionally, we introduce a weaker

version of OLE, which has potential independent value. We also modify the proposed

protocol to generate quantum-UC secure vector OLE (VOLE) and provide bounds on the

size of VOLE based on the security parameters.

1The code can be accessed at the following repo: github.com/manel1874/private-phylogenetic-analysis.

4

https://github.com/manel1874/private-phylogenetic-analysis

Outline

The results are presented as follows. We start presenting the technical elements required

throughout the thesis in Chapter 2. Chapter 3 is devoted to quantum oblivious transfer

protocols. Then, in Chapter 4 we compare classical and quantum approaches for OT. In

Chapter 5, we presented our implementation of quantum-assisted SMC system applied to

phylogeny analysis. In Chapter 6, we present our quantum OLE protocol along with its

security proof. Finally, in Chapter 7 we present an overall conclusion of the thesis and

propose some future work.

Published research

This thesis draws on research published in various journals and presents the results of my

PhD work, which involved the following projects.

• [48] Manuel B. Santos, Paulo Mateus, and Chrysoula Vlachou. “Quantum Univer-

sally Composable Oblivious Linear Evaluation”. 2022. DOI: 10.48550/ARXIV.2204

.14171. Poster at QCrypt2022.

• [49] Manuel B. Santos, Paulo Mateus, and Armando N. Pinto. “Quantum Oblivious

Transfer: A Short Review”. In: Entropy 24.7 (2022), p. 945.

• [50] Manuel B. Santos et al. “Private Computation of Phylogenetic Trees Based on

Quantum Technologies”. In: IEEE Access 10 (2022), pp. 38065–38088.

• [51] Manuel B. Santos, Armando N. Pinto, and Paulo Mateus. “Quantum and classi-

cal oblivious transfer: A comparative analysis”. In: IET Quantum Communication

2.2 (2021), pp. 42–53.

• [52] Manuel B. Santos et al. “Quantum Secure Multiparty Computation of Phyloge-

netic Trees of SARS-CoV-2 Genome”. In: 2021 Telecoms Conference (ConfTELE).

IEEE, Feb. 2021.

• [53] Armando N. Pinto et al. “Quantum Enabled Private Recognition of Compos-

ite Signals in Genome and Proteins”. In: 2020 22nd International Conference on

Transparent Optical Networks (ICTON). IEEE, July 2020.

Chapter 3 is based on [49] and [50]. Chapter 4 is based on the work developed in both

[51] and [50]. Chapter 5 is the combination of [50, 52, 53]. Finally, Chapter 6 presents all

the results from [48].

5

6

Chapter 2

Technical overview

In this chapter, we present the fundamental mathematical and information-theoretic con-

cepts that are utilized throughout the thesis.

2.1 Mathematical preliminaries

In this section, we define and explain the mathematical notation and concepts used

throughout the thesis.

First, we use gcd(a, b) to denote the greatest common divisor between integers a and b,

with a, b ∈ Z. We use Zq to denote the set of integers a mod q, and Z∗q to denote the set

of integers a ∈ Zq that are coprime with q, i.e., gcd(a, q) = 1. When q is prime, Z∗q forms

a multiplicative group of order q − 1 and Zq forms a finite field of order q. A generator

g of a multiplicative group G is an element in G such that for all a ∈ G, there exists an

integer r such that gr = a. The discrete logarithm base g of an element a ∈ G, denoted

by logg a, is the power r of g such that gr = a.

We use |I| to denote the size of a set I and use the notation s ←$ I to describe

a situation where an element s is drawn uniformly at random from the set I. Vectors

v = (v1, . . . , vn) are denoted in bold. Given a set J , v|J denotes the subvector of v

restricted to the indices i ∈ J . For m ∈ Zq, [m] is the ordered set 1, 2, . . . ,m, and for

m,n ∈ Zq such that m < n, [m,n] = m,m+ 1, . . . , n− 1, n. For x,y ∈ Znq , rH(x,y) =

dH(x,y)/n is the relative Hamming distance, where the Hamming distance is given by

dH(x,y) = |i : xi 6= yi|.

Finally, we use the big-O notation to denote the fastest-growing term of the number

of operations with respect to some security parameter n. A negligible function µ(n) is a

function such that µ(n) < 1/p(n) for some polynomial p(n) and sufficiently large n.

7

2.2 Secure multiparty computation

Secure multiparty computation (SMC) allows multiple parties, denoted as Pi with i ∈
1, . . . , n, to jointly compute a function, f(x1, . . . , xn) = (y1, . . . , yn), without revealing

their individual inputs, xi, to each other. The only information received by each party Pi

is their corresponding output yi of the function f(), which may reveal some information

about the parties’ inputs depending on the function being computed. This functionality

is designed to be equivalent to a scenario where each party Pi sends their input xi to

an independent and trusted third party PTTP, who computes f(x1, . . . , xn) and sends the

output yi to each party.

It is important to note that SMC may not completely hide the inputs of the parties,

even with a perfectly secure protocol. This is due to the security guarantees of the ideal

scenario, where it is possible for a perfectly legitimate SMC protocol (such as using a

trusted third party) to leak all the inputs of the parties. This can happen when one of

the parties can use their inputs and outputs to invert the function f(). For example, if

two parties want to compute the average of their weight, it is straightforward for both

parties to use their weight and the average value to compute the other party’s weight, as

the function is bijective with the adversaries’ inputs fixed. In this scenario, SMC does

not improve the privacy of the computation.

The following are some informal descriptions of properties of SMC:

1. Correctness: If all the parties abide by the protocol, the protocol will evaluate the

correct output according to f() and the parties’ inputs x1, . . . , xn.

2. Passive security: If the adversaries do not deviate from the protocol, they do not

learn the inputs of the honest parties. In this thesis, we refer to adversaries who

do not deviate from the protocol as semi-honest parties, also known as honest-but-

curious adversaries in the literature.

3. Active security: If the adversaries deviate arbitrarily from the protocol (dishonest

parties), they do not learn the inputs of the honest parties. In active security, there

are two types of protocols that react differently to adversarial behavior. They can

be robust against the adversaries, meaning the honest parties will still receive the

correct answer, or the honest parties can abort the protocol when there is malicious

activity.

Regarding the corruption strategy of the adversaries, they can be of two types: static or

adaptive. Static security guarantees that the protocol is secure against an adversary who

only corrupts parties before the execution of the protocol. Adaptive security is a more

challenging property to attain, as it assumes that the adversary can choose which party

8

to corrupt throughout the protocol. It is also worth noting that there is a fundamental

difference between the adversarial structure of encryption methods and SMC methods.

In encryption methods, the adversary is considered an external party (usually referred to

as Eve) that interferes with the communication between the protocol parties. In the case

of SMC methods, the adversaries are a subset of the protocol parties.

Next, we present two common approaches used for SMC protocols: the garbled circuit

approach and the secret sharing approach. The garbled circuit approach is generally

based on boolean circuits and follows from the techniques developed by Yao [23]. The

secret sharing approach is commonly based on arithmetic circuits (although it can also

be used with boolean circuits) and follows from the properties of secret sharing [8, 10].

It should be noted that throughout this thesis, we will focus on two-party protocols. For

this reason, we name these parties Alice and Bob, and follow the convention that Alice

plays the role of the protocol’s sender and Bob plays the role of the receiver.

2.2.1 Garbled circuit approach

The garbled circuit approach, which is based on Yao’s seminal work [23], proposes a tech-

nique to “encrypt” boolean circuits in such a way that preserves the security requirements

of both parties. This “encrypted” version is called a garbled circuit and is presented in

this section along with the Yao protocol description. This approach is typically best suited

for scenarios with higher latency, as it typically requires a fixed number of communication

rounds, regardless of the complexity of the function being evaluated. However, for large

circuits, high bandwidth is required [54].

Before delving into the details of the Yao protocol, it is important to introduce a crucial

primitive: oblivious transfer (OT).

Oblivious transfer

The study of oblivious transfer (OT) has been active since its first proposal by Rabin

in 1981 [55]. The importance of OT comes from its wide range of applications. In par-

ticular, it can be proven that OT is equivalent to the secure two-party computation of

general functions [56, 57], meaning that a secure two-party computation can be imple-

mented using OT as its building block. Additionally, this primitive can also be used for

secure multiparty computation (SMC) [27], private information retrieval [58], private set

intersection [59], and privacy-preserving location-based services [60].

The OT functionality can be presented in many flavours. In this thesis, when we refer

to OT, we mean the 1-out-of-2 OT that is specified in Figure 2.1. Consequently, we have

that OT must satisfy the following security requirements:

9

• Concealing: Alices knows nothing about Bob’s bit choice b.

• Obliviousness: Bob knows nothing about the message mb⊕1.

OT can be generalized to the case of k-out-of-N OT, where Alice owns N messages,

and Bob can choose k of them. For k = 1, this is commonly called private database query

(PDQ). Also, we call random OT when both parties’ inputs are random.

Yao protocol

A solution for SMC was first proposed by Yao [23], where he developed the concept of

garbled circuits, which is one of the key elements for secure computation. The Yao’s

garbled circuit protocol is originally designed for only two parties, but its generalization

to multiple parties was later achieved by GMW [24] and BMR [9]. Additionally, various

implementation optimizations have been developed to improve the performance of the

Yao protocol, such as point-and-permute [9], row reduction [61, 62], FreeXOR [63] and

half gates [64].

As mentioned before, the main idea of the Yao protocol is to represent the desired

function f() as a boolean circuit C, i.e. a sequence of logical gates interconnected with

wires. After the generation of the circuit C, each party will have two distinct roles.

Generally speaking, Alice (also known as the garbler) randomly generates keys for each

input bit, encrypts each circuit’s gate, and sends both elements to Bob (also known as the

evaluator). This procedure masks Alice’s inputs from Bob. Then, through the oblivious

transfer (OT) functionality, Bob receives the keys corresponding to his input bits. This

allows to mask Bob’s inputs from Alice. Finally, since the evaluator has all the input

keys, he can decrypt every gate, and evaluate the circuit. To better understand how the

protocol works, let us consider a four-input boolean circuit description of the Millionaires’

FOT functionality

• Input phase: Alice sends (m0,m1) ∈ {0, 1}l (two messages) to FOT and Bob
sends b ∈ {0, 1} (bit choice) to FOT.

• Output phase: Alice receives nothing ⊥ from the functionality and Bob
receives mb.

Figure 2.1: OT functionality.

10

problem. This problem can be described by the following expression:

f(a, b) =

1 if a > b,

0 otherwise,
(2.1)

for a, b ∈ {0, 1}2. In summary, it allows two parties to discover who has the largest value

without revealing them.

The protocol goes as follows:

1. Circuit generation: The garbler Alice generates a boolean circuit of function (2.1):

Figure 2.2: Boolean circuit of the Millionaires’ Problem. Optimised circuit according to
the construction in [1].

In this case, the circuit contains one NOT gate (g1), two AND gates (g2, and g5),

two XOR gate (g4 and g6), one XNOR gate (g3) and four input wires (w1 and w2

belonging to Alice and w3 and w4 to Bob).

2. Wire encryption: Alice uses a random number generator to generate two keys k0
i

and k1
i for each wire wi, i ∈ {1, ..., 10}. These keys correspond to the possible values

(0 or 1) on the wire. Note that this is done to prevent Bob from knowing the true

value of the wires during the evaluation process.

3. Gate encryption: For every gate gl in the circuit with corresponding input wires wi

and wj and output wire ws, Alice creates the following table:

Enck0
i

(
Enck0

j

(
k
gl(0,0)
s

))
Enck0

i

(
Enck1

j

(
k
gl(0,1)
s

))
Enck1

i

(
Enck0

j

(
k
gl(1,0)
s

))
Enck1

i

(
Enck1

j

(
k
gl(1,1)
s

))
11

where gl(a, b) is the output of gate gl for inputs a, b ∈ {0, 1}. So, we could think of

each row as a locked box that requires two keys to be opened. If the two correct

keys are used, it outputs the key corresponding to the desired output value given

by gl. After encrypting each gate, Alice permutes the rows of the corresponding

table, otherwise, it would be easy to know the real value of the input keys. Then,

she sends to Bob the garbled tables along with Alice’s input keys.

As an example, we can easily see that if we use input keys k0
i and k1

j (corresponding

to real values 0 and 1), we would only be able to decipher the second row of the

table, Enck0
i
(Enck1

j
(k
gl(0,1)
s)), and get k

gl(0,1)
s .

4. Oblivious Transfer: At this stage of the protocol, the evaluator Bob knows the

garbled circuit and Alice’s input keys but he does not know the keys corresponding

to his real inputs. However, since Bob wants to keep his input value private he

cannot directly ask for those keys. At this point, the OT functionality enables the

evaluator to receive his input keys without compromising neither the evaluator’s nor

garbler’s security. In fact, for every input wire, both parties perform an OT where

Alice plays the role of the sender and Bob plays the role of the receiver.

Let us assume Alice’s input keys to be k0
1 and k1

2 (corresponding to the real value 01)

and Bob’s input bits to be 11. This means that Bob must use the respective input

keys (k1
3 and k1

4) in order to correctly evaluate the circuit. So, they will execute two

OT protocols where:

• Alice inputs: (k0
3, k

1
3) and (k0

4, k
1
4);

• Bob inputs: b1 = 1 and b2 = 1.

5. Evaluation: Once the evaluator has all the necessary elements, he can proceed with

the circuit evaluation. In this step, he simply has to decipher the correct rows of

the garbled tables sent by Alice with the corresponding keys. Since the rows of the

tables are shuffled, the evaluator does not know which row is the correct one. This

small issue can be solved by simple techniques (Point-and-Permute or encryption

with a certain number of 0 padded) which, for the sake of brevity, we will not explore

here. At the end of the evaluation, the evaluator receives the key that corresponds

to the result. Finally, the evaluator sends the resulting key to the garbler and the

garbler tells him the final bit.

According to our Millionaires’ problem, the evaluation yields the following results

for a = 01 and b = 11: g1(k1
4) = k0

5, g2(k0
5, k

1
2) = k0

6, g3(k0
6, k

1
3) = k0

7, g4(k0
6, k

0
1) = k1

8,

g5(k0
7, k

1
8) = k0

9, g6(k0
6, k

0
9) = k0

10. Actually, the desired result is 0.

12

The Yao protocol has its security based on two main building blocks: garbled circuits

and oblivious transfer. Although garbled circuits can be generated with symmetric en-

cryption (i.e. using double AES encryption), OT protocols cannot be classically achieved

with symmetric cryptography alone [40]. Thus, it is crucial to find efficient protocols for

a quantum-resistant OT.

2.2.2 Secret sharing approach

The secret sharing approach, first introduced by BGW [8] and CCD [10], does not involve

encrypting the circuit. Instead, parties use a secret sharing scheme to evaluate the circuit.

This approach involves simple operations such as addition and multiplication, but the

number of communication rounds needed will depend on the size of the circuit being

evaluated. An important primitive for secret sharing based protocols is oblivious linear

evaluation (OLE).

Oblivious linear evaluation

Oblivious linear evaluation (OLE) can be thought of as a generalization of oblivious trans-

fer (OT) [55]. It has been shown to be a building block for securely evaluating arithmetic

circuits, such as in [65–68]. Specifically, OLE can be used to generate multiplication

triples, which are essential for securely computing multiplication gates [68]. OLE also

has applications in tasks such as two-party secure computation [69–73] and private set

intersection [74].

FOLE functionality

• Input phase: Alice sends (a, b) ∈ Z2
d (two field elements) to FOLE and Bob

sends x ∈ Zd to FOLE.

• Output phase: Alice receives nothing ⊥ from the functionality and Bob
receives f(x) := ax+ b.

Figure 2.3: OLE functionality.

The OLE functionality specification is presented in Figure 2.3. Similarly, we have that

OLE must satisfy the following security requirements:

• Concealing: Alices knows nothing about Bob’s field element x.

• Obliviousness: Bob knows nothing about the function f() other than its evaluation

at x, i.e. f(x).

13

We can also generalize the OLE functionality to a vectorized version. The vector OLE

(VOLE) functionality is presented in Figure 2.4. Note that Bob only inputs one field

element x and Alice inputs two vectors.

FVOLE functionality

• Input phase: Alice sends (a, b) ∈ Z2n
d (two vectors of field elements) to

FVOLE and Bob sends only x ∈ Zd to FVOLE.

• Output phase: Alice receives nothing ⊥ from the functionality and Bob
receives f(x) := ax+ b.

Figure 2.4: VOLE functionality.

Basic operations

To highlight the importance of OLE in secret sharing based SMC protocols, we go through

a passively secure protocol [75]. We consider the two party case (Alice and Bob) where the

parties own additive shares of the secret. So, for some secret value x, where x = xA +xB,

Alice owns xA and Bob owns xB. Depending on the circuit, the operations used in the

protocol are as follows:

• Input. For Alice to secret share her input value x, she randomly chooses xB and

sends it to Bob. Alice defines xA as xA = x− xB;

• Addition. There are two scenarios to consider:

– Scalar. For Alice and Bob to add a scalar to a secret x (z = a + x), Alice

computes zA = a+ xA and Bob sets zB = xB.

– Shares. For Alice and Bob to add secrets x and y (z = x+y), they individually

add their corresponding shares, i.e. zA = xA + yA and zB = xB + yB.

• Multiplication. There are two scenarios to consider:

– Scalar. For Alice and Bob to multiply a secret x by a scalar a (z = a · x),

Alice computes zA = a · xA and Bob computes zB = a · xB.

– Shares. Observe that, for Alice and Bob to multiply secrets x and y (z = x·y),

they require some sort of communication to compute cross terms:

x · y = (xA + xB) · (yA + yB) (2.2)

= xA · yA + xA · yB + xB · yA + xB · yB (2.3)

14

At this point, Alice and Bob can execute two OLEs to secret share the cross

terms xA · yB and xB · yA. Indeed, if Alice inputs (xA,−sA) and (yA,−s′A)

for random values sA, s
′
A and Bob inputs yB and xB, Bob will output sB =

xA · yB − sA and s′B = yA · xB − s′A. Thus, we have that sA + sB = xA · yB and

s′A + s′B = yA · xB. So, Alice share is zA = xA · yA + sA + s′A and Bob share is

zB = sB + s′B + xB · yB.

• Output. For Alice to receive the output value x of some output wire, Bob simply

sends xB to Alice. Alice outputs x = xA + xB.

2.3 Quantum information

Quantum information theory is a field that studies the implications of using quantum

systems as the medium of information. The information carriers in quantum systems are

governed by the laws of quantum mechanics, allowing for properties not present in classical

methods to be exploited. In this section, we present the basic elements of quantum

information that will be used in the quantum protocols presented and their security proofs.

In quantum information theory, a quantum system is described by a Hilbert space HA.

In this thesis, we will consider only finite-dimensional Hilbert spaces, where dimHA =

d <∞. The space HA can be identified with the complex vector space Cd, as well as its

corresponding dual space H∗A. We use the Dirac bra-ket notation to describe the states

of a quantum system. A pure state is described by a normalized vector |ψ〉A ∈ HA and

its dual vector 〈ψ|A ∈ H∗A. To simplify notation, we may omit specifying the Hilbert

space to which a state belongs if it is clear from context. The standard basis of Cd can

be identified with the computational basis of HA, denoted as {|i〉}d−1
i=0 . The joint system

of multiple subsystems H1, . . . ,Hn can be described by their tensor product, denoted as

H1⊗ . . .⊗Hn. The vectors in this joint system are represented as |x〉 = |x1〉⊗ . . .⊗ |xn〉,
where x ∈ Znd .

We can generate quantum pure states, denoted as |ψi〉 ∈ H, according to a prob-

ability distribution pi. This situation is described by a density operator, denoted as

ρ =
∑

i pi |ψi〉〈ψi|, which is commonly referred to as a mixed state. Density operators are

positive semi-definite hermitian operators with unitary trace, that is, ρ ≥ 0 and tr ρ = 1.

The set of hermitian operators, positive semi-definite operators and density operators on

a Hilbert space H are denoted as Herm(H), Pos(H) and P(H) respectively.

A mixed state is considered classical if it is of the form ρX =
∑

x∈X PX(x) |x〉〈x|, where

X is a finite set and PX is a probability distribution over X . The uniform distribution over

X is denoted as τX = 1
|X |
∑

x∈X |x〉〈x|, where |X | is the size of X . The identity operator is

denoted by 1. Additionally, for a bipartite quantum state ρXB, it is said to be a classical-

15

quantum state (cq-state for short) if it is of the form ρXB =
∑

x∈X PX(x) |x〉〈x| ⊗ ρxB,

where PX is a probability distribution over the finite set X .

2.3.1 Trace distance

Proving the security of quantum protocols requires a method for distinguishing quantum

states. Fortunately, there is a useful metric, known as the trace distance, that measures

the distinguishability of two quantum states, σ, ρ ∈ P(H), by any procedure, regardless

of efficiency. The trace distance is defined as [76]

δ(ρ, σ) :=
1

2
||ρ− σ||1,

where || · ||1 is the 1−Schatten norm in the space of bounded operators acting on a Hilbert

space. Its name comes from the fact that we can write it using the trace operator as follows

||ρ− σ||1 = Tr
{√

(ρ− σ)†(ρ− σ)
}
.

In this work, we will utilize completely positive trace preserving (CPTP) maps. These

maps are defined as preserving the normalization of input states and mapping positive

operators to positive operators. As a result, they ensure that density operators are mapped

to density operators, making them useful in describing all physically possible operations.

They will be a key focus in Chapter 6, which deals with the quantum oblivious linear

evaluation protocol. However, it is important to note that CPTP maps do not increase

the distinguishability between quantum states, as proven in Lemma 1. In other words, the

trace distance between two quantum states remains unchanged after being transformed

by a CPTP map.

Lemma 1 (Lemma 7, [76]). The trace distance has the following properties:

1. For any CPTP map E and any σ, ρ ∈ P(H) we have that

δ(E(σ), E(ρ)) ≤ δ(σ, ρ).

2. Let σ, σ′ ∈ P(H) and ρ ∈ P(H′). Then,

δ(σ ⊗ ρ, σ′ ⊗ ρ) = δ(σ, σ′).

Although the following lemma is not directly related to the trace distance, it will be

used in Chapter 6 to bound the trace distance between two states.

16

Lemma 2 (Corollary 4, [77]). Let X := {x1, . . . , xn} be a list of (not necessarily distinct)

values in [0, 1] with the average µX := 1
n

∑
i=1n xi. Let T of size t be a random subset of

X with the average µT := 1
t

∑
i∈T xi. Then, for any ε > 0, the set T̄ = X \T with average

µT̄ = 1
n−t
∑

i∈K xi satisfies

P

[
µT̄ − µT ≥

√
n(t+ 1)

2(n− t)t2
log

1

ε

]
≤ ε.

2.3.2 Entropy

Entropy measures are used to quantify the unpredictability of a random variable and

the amount of information gained by observing a system. One of the earliest and most

widely used classical entropy measures was developed by Shannon in 1948 [78]. Shannon’s

entropy measure captures the idea that more predictable events convey less information.

The more surprising and unpredictable an event is, the more informative it is. Shannon

started by proposing the following function to describe the amount of information an

event A has:

I(A) = − log (P (A)) ,

where P (A) is the probability of event A. Shannon’s entropy is defined as the average

amount of information of all possible events, and, for a discrete random variable X, is

calculated as follows:

H(X) = E [I(X)] .

In the case of a distribution P (X) over the set {0, 1} that selects 1 with probability p

and 0 with probability 1− p, the binary entropy is given by the following equation:

H(X) = −p log2 p− (1− p) log2(1− p).

Throughout our analysis, we will also frequently use the d−ary entropy function, which

is a generalization of the standard binary entropy function. However, it should be noted

that the d−ary entropy does not possess the same operational meaning as the binary

entropy measure.

Definition 1. For d ≥ 2, the d-ary entropy function hd : [0, 1]→ R is given by

hd(x) = x logd(d− 1)− x logd x− (1− x) logd(1− x).

17

The d−ary entropy is specially useful to bound the size of an important object in

coding theory, the Hamming ball. The Hamming ball with radius µ centered at some

point r is defined to be the set of vectors z at a distance µ from r, when the distance is

given by the Hamming distance dH . So, we have the following Lemma.

Lemma 3 (Lemma 5, [79]). For an integer d ≥ 2 and µ ∈ [0, 1− 1
d
],

|{z ∈ Znd : dH(z, r) ≤ µn}| ≤ dhd(µ)n.

When proving the security of protocols, it is crucial to understand the worst-case

scenario rather than the average behavior. Therefore, the standard binary entropy def-

initions are not sufficient for securing protocols, and a new measure is needed. This is

achieved through the use of min-entropy. Classically, for a finite random variable X,

where P (X = x) = px, the min-entropy is defined as:

Hmin(X) = − log max px.

Operationally, this gives the probability of correctly guessing the element drawn from X,

when choosing the element x with maximum probability. That is, Pguess = max px. This

definition can also be extended to cq-states ρXB ∈ P(HA⊗HB) as defined in Definition 2.

Definition 2. Let ρXB ∈ P(HX ⊗ HB) be a cq-state. The conditional min-entropy is

given by

Hmin(X|B)ρ = − logPguess(X|B),

where Pguess(X|B) is given by

Pguess(X|B) = max
{Mx}x

∑
x

px tr
[
Mxρ

B
x

]
,

where the maximization is taken over all positive operator-valued measures (POVM), i.e.

{Mx ≥ 0 :
∑

xMx = 1}.

In Definition 2, Pguess(X|B) represents the probability of correctly guessing x given

access to system B. Additionally, the maximization is taken over the most general type

of measurements allowed in quantum mechanics. The following lemma states how min-

entropy changes when a fixed bijective function is applied to the classical subsystem of a

cq-state. This lemma will be important in the proof of security for the quantum oblivious

linear evaluation protocol presented in Chapter 6.

Lemma 4. Let ρXB ∈ P(HX ⊗HB) be a cq-state and let f : X → X be a fixed bijective

function. Then,

Hmin(X|B)ρ ≤ Hmin(f(X)|B)ρ.

18

Proof. Consider the unitary operator,

U =
∑
x

|f(x)〉〈x| .

We check that U is indeed unitary:

UU † =

(∑
x

|f(x)〉〈x|

)(∑
x′

|x′〉〈f(x′)|

)
=
∑
x

|f(x)〉〈f(x)| = I,

where in the last step we used the fact that the function f is a bijection. The same holds

for U †U = I.

Now, observe the following,

Hmin(f(X)|B) = − log max
{Mx}x

∑
x

px tr
[
Mxρ

B
f(x)

]
= − log max

{Mx}x

∑
x

px tr
[
MxUρ

B
x U
†]

= − log max
{Mx}x

∑
x

px tr
[
U †MxUρ

B
x

]
.

It is important to note that {Nx}x =
{
U †MxU

}
x

is also a POVM, as they are all posi-

tive semidefinite operators and they sum up to unity. Therefore, we have that
{
U †MxU

}
x

can only decrease the space of possible POVMs, which is why we have:

max
{Mx}x

∑
x

px tr
[
U †MxUρx

B
]
≤ max
{Mx}x

∑
x

px tr
[
Mxρx

B
]
.

This means that,

Hmin(f(X)|B) ≥ − log max
{Mx}x

∑
x

px tr
[
Mxρ

B
x

]
= Hmin(X|B).

The conditional min-entropy can be generalized to the fully quantum case where both

systems are quantum (Definition 3).

Definition 3. Let ρAB′ ∈ P(HA ⊗ H′B) and σB′ ∈ P(H′B). The min-entropy of ρAB′

relative to σB′ is given by

Hmin(A|B′)ρ|σ = − log min{λ : λ · idA ⊗ σB′ ≥ ρAB′},

19

and

Hmin(A|B′)ρ = sup
σB′

Hmin(A|B′)ρ|σB′ .

Furthermore, consider the superposition state |φ〉AB′ =
∑
z ∈ Bαz |z〉 |ψz〉 for some

set B and arbitrary coefficients αz. We define ρAB′ = |φ〉〈φ|AB′ and the mixture ρ̃AB′ =∑
z∈B |αz|2 |z〉〈z|⊗ |ψz〉〈ψz|. The following lemma gives a lower bound on the min-entropy

of ρAB′ in terms of the min-entropy of ρ̃AB′ .

Lemma 5 (Lemma 3.1.13, [80]). Let ρAB′ and ρ̃AB′ be defined as above. Then,

Hmin(A|B′)ρ ≥ Hmin(A|B′)ρ̃ − log |B|.

It is important to understand the changes in min-entropy that occur when a completely

positive (CP) map is applied, as this is a crucial aspect of the security proof for the

quantum oblivious linear evaluation protocol outlined in Chapter 6. It is known that, for

a unital CP map M (i.e. M(1) = 1), the conditional min-entropy does not decrease,

i.e. Hmin(M(A)|B) ≥ Hmin(A|B). However, this result alone is insufficient for deriving

practical min-entropy bounds. To obtain meaningful bounds for specific operators M,

it is necessary to utilize Theorem 6, in conjunction with Lemma 8 and Lemma 9. It is

important to note that for clarity, the theorem employs the notation outlined in Chapter 6.

Lemma 6 (Theorem 1, [81]). Let X denote a system with n qudits, andMX→FY be a CP

map such that ((M† ◦M)X⊗ idX̄)(ΦXX̄) =
∑

(a,b)∈Z2n
d
λ(a,b)Φ(a,b). Then, for any partition

of Z2n
d = S+ ∪S− into subsets S+ and S−, and M(σXE) = σFYE we have

2−H2(FY|E)σFYE |σXE ≤
∑

(a,b)∈S+

λ(a,b)2
−H2(X|E)σXE +

(
max

(a,b)∈S−
λ(a,b)

)
dn, (2.4)

where, in general, for a (not necessarily normalized) quantum state ρAB ∈ P(HA ⊗HB),

H2(A|B) is the so-called collision entropy [80], given as

H2(A|B)ρAB = − log

(
Tr

{(
ρ
−1/4
B ρABρ

−1/4
B

)2
})

.

If we further condition on a general quantum state σB ∈ P(HB), we have

H2(A|B)ρAB |σB = − log

(
Tr

{(
σ
−1/4
B ρABσ

−1/4
B

)2
})

.

It is interesting to note that when M is trace preserving, we have,

2−H2(FY|E)σFYE |σXE = 2−H2(FY|E)σFYE .

20

This follows from the definition of the collision entropy and the fact that TrFY [M(σXE)] =

σE [81].

Next, we present a chain rule for the collision entropy.

Lemma 7 (Proposition 8, [82]). For any ρABC ∈ P(HA ⊗HB ⊗HC), it holds that

H2(A|BC)ρ ≥ H2(AC|B)− log dC ,

where dC is the rank of ρC.

Now, we need a way to relate min-entropy and collision entropy to have useful bounds

for min-entropy. This is done through the following two Lemmas.

Lemma 8 (Lemma 17, [81]). Let ρAB′ ∈ P(HA ⊗HB′) and dA = dimHA. Then

Hmin(A|B′)ρ ≤ H2(A|B′)ρ ≤ 2Hmin(A|B′)ρ + log dA.

Lemma 9 (Lemma 18, [81]). Let ρXB′ ∈ P(HX ⊗HB′) be a cq-state. Then

Hmin(X|B′)ρ ≤ H2(X|B′)ρ ≤ 2Hmin(X|B′)ρ.

Finally, we present a data-processing inequality, which reflects the intuitive idea that

the min-entropy of a system A, given side information B, does not decrease under local

physical operations applied to B.

Lemma 10 (Data processing inequality, Theorem 6.19, [83]). Let ρAB ∈ P(HA ⊗ HB).

Moreover, let E be a sub-unital CPTP map from system A to A′ (i.e. E(1A) ≤ 1A′) and

T be a CPTP map from system B to B′. Then, the state σA′B′ = (E ⊗ T) ρAB satisfies

Hmin(A|B)ρ ≤ Hmin(A′|B′)σ.

2.3.3 Two-universal functions

We start by defining a particular set of functions that are usually used to amplify the

privacy of the parties’ input and output elements.

Definition 4 (δ−almost two-universal hash family; two-universal hash family). A family,

F, of functions, g, with domain D and range R is called a δ−almost two-universal hash

family if for any two distinct elements w,w′ ∈ D and for g chosen at random from F, the

probability of a collision g(w) = g(w′) is at most δ. In the special case that δ = 1/|R|,
where |R| is the size of the range R, the family is called two-universal.

21

Now, we present a particular two-universal hash family, known as Multi-linear Mod-

ular Hashing (MMH), that preserves the structure of the OLE input and output while

maintaining its privacy amplification guarantees. This family is based on the modular

inner product of vectors [84].

Definition 5 (Definition 2, [84]). Let d be a prime and let n be an integer n > 0. Define

a family MMH∗ (Multi-linear Modular Hashing) of functions from Znd to Zd as follows

MMH∗ := {gx : Znd → Zd |x ∈ Znd},

where the functions gx are defined for any x = (x1, . . . , xn), m = (m1, . . . ,mn) ∈ Znd

gx(m) = x ·m mod d =
∑

ximi mod d.

Theorem 1 (Theorem 3, [84]). The family MMH∗ is two-universal.

Halevi and Krawczyk [84] actually prove a stronger result, namely that the MMH∗ fam-

ily is ∆−universal, which is more general than two-universal. For the sake of simplicity,

we only present the simpler version of this theorem here.

The Generalized Leftover Hash Lemma, presented below, is a crucial component in

the security proof of Chapter 6. It ensures that, after applying a known function g from

a two-universal family to a random variable X, the resulting random variable Z = g(X)

is close to uniform, given some (possibly quantum) side information E. This is a high-

dimensional version of the Leftover Hash Lemma, which can be easily derived by using

Lemma 4 from [85] with dA = dl. Note that this is a special version, as Tomamichel et

al. in [85] prove it in the more general case for δ−almost two-universal hash families.

Lemma 11 (Generalized Leftover Hash Lemma [85]). Let X be a random variable, E a

quantum system, and F a two-universal family of hash functions from X to Zld. Then,

on average over the choices of g from F, the output Z := g(X) is ξ-close to uniform

conditioned on E, where

ξ =
1

2

√
2l log d−Hmin(X|E). (2.5)

2.4 Universal composability

The universal composability (UC) framework, first introduced by Canetti in the classical

setting [86], was extended to the quantum setting by Unruh, Ben-Or, and Mayers [87, 88]

22

(see also [89, 90]). It provides strong composability guarantees by ensuring the security

of a protocol is independent of any external execution of the same or other protocols.

Both the classical and quantum frameworks use the same ideal-real world comparison

structure and consider similar interactions between machines. However, the quantum-

UC framework allows for the manipulation of quantum states in addition to classical

operations.

Specifically, the quantum-UC security of a protocol Π is determined by comparing its

execution in a real scenario, where Π is executed, to an ideal scenario, where an ideal

functionality F that carries out the same task is executed. The comparison is performed

by a special machine called the environment, Z, which supervises the execution of both

scenarios and has access to any external information, such as concurrent executions of the

same or any other protocol. In the two-party case, the structure of the machines in both

scenarios is as follows: in the real scenario, there is the environment Z, the adversary Adv,

and the two parties, Alice and Bob. In the ideal scenario, there is the environment Z, the

simulator S, the two parties Alice and Bob, and the ideal functionality F . Informally,

a protocol Π is considered quantum-UC secure if the environment Z cannot distinguish

between the execution of Π in the real scenario and the execution of the functionality F
in the ideal scenario. Any possible attack of the adversary Adv in the execution of Π can

be simulated by the simulator S in the ideal-world execution of F , without any noticeable

difference from the point-of-view of the environment Z. As the ideal functionality F is

secure by definition, the real-world adversary is not able to extract any more information

than what is allowed by the functionality F .

The formal definition of quantum-UC security can be stated as follows. Let Π and ρ

represent the real and ideal two-party protocols, respectively. Let EXECΠC ,Adv,Z denote

the output of the environment Z at the end of the real execution, where C denotes the

corrupted party and Adv denotes the adversary. Similarly, let EXECρC ,S,Z denote the

output of the environment Z at the end of the ideal execution, where S is the simulator.

Definition 6 (Statistical quantum-UC security, Computational quantum-UC security

[89]). Let protocols π and ρ be given. We say that π statistically quantum-UC emulates ρ

if and only if for every party, C, and for every adversary, Adv, there exists a simulator,

S, such that for every environment Z, and every z ∈ {0, 1}∗, n ∈ N,

∣∣P[EXECΠC ,Adv,Z(n, z) = 1]− P[EXECρC ,S,Z(n, z) = 1]
∣∣ ≤ µ(n),

where µ(n) is a negligible function and n is the security parameter. We furthermore

require that if Adv is quantum-polynomial-time, so is S. Finally, if we consider quantum-

polynomial-time Adv and Z we have computational quantum-UC security.

23

FCOM functionality

• Commitment phase. Upon receiving (commit,M) from Bob, the function-
ality sends commit to Alice.

• Opening phase. Upon receiving open from Bob, the functionality sends
(open,M) to Alice.

Figure 2.5: Commitment functionality.

The role of the simulator, S, in the quantum-UC framework is to simulate the execution

of the protocol Π in such a way that the environment Z is not able to distinguish between

the real execution and the ideal execution. To accomplish this, S runs a simulated honest

party that interacts with the environment, which is acting as the adversary. Additionally,

S controls the dishonest party and their inputs to the ideal functionality F , as well as

the external functionality Fext if used in the real execution.

In order to generate a simulated execution that cannot be distinguished by the en-

vironment, S relies on its ability to extract the inputs provided to the dishonest party

by the environment and uses them along with the ideal functionality outputs. Further-

more, S can reprogram Fext in the ideal world as needed to produce an indistinguishable

simulation of the real world.

In summary, the simulator S plays a crucial role in the quantum-UC framework by

simulating the execution of the real protocol Π in the ideal scenario, in order to ensure

that the environment Z is not able to distinguish between the real execution and the ideal

execution, thereby providing strong composability guarantees for the protocol Π.

Ideal functionalities

Whenever a protocol Π utilizes an external functionality Fext, we say that Π is in the

Fext−hybrid model. The quantum OLE protocol ΠQOLE presented in Chapter 6 employs

the ideal commitment functionality, FCOM, defined in Figure 2.5. Note that the protocol

makes multiple calls to FCOM and only opens a subset of the committed elements. To

specify different instance calls, we use an index element i. In the commitment phase, Bob

sends (commit, i,M) to the functionality, which in turn sends (commit, i) to Alice. In the

opening phase, Bob sends (open, i), and the functionality sends (open, i,M) to Alice.

The FCOM functionality can be replaced by the commitment protocol ΠCOM pre-

sented in [91], which is computationally UC-secure in the Common Reference String

(CRS) model. As analyzed in [92] (Theorem 3.), the protocol ΠCOM computationally

24

quantum-UC realizes FCOM in the CRS model. Therefore, since ΠQOLE is proved to be

quantum-UC secure, the resulting protocol ΠΠCOM
QOLE is quantum-UC secure by the compo-

sition theorem [89].

2.5 Conclusion

Throughout this chapter, we introduce the essential concepts that underpin the rest of

the thesis. The chapter is divided into four main sections. First, we provide a succinct

overview of the mathematical notation. Next, we give an informal description of secure

multiparty computation. Finally, we introduce the basic formalism of quantum informa-

tion and the universal composability framework in the quantum setting.

25

26

Chapter 3

Quantum oblivious transfer

In the classical setting, it is not possible to develop information-theoretic secure OT or

reduce it to one-way functions, and therefore public-key computational assumptions are

required. Impaggliazzo and Rudich [40] demonstrated that one-way functions alone cannot

imply key agreement, which is an example of asymmetric cryptography. Additionally,

Gertner et al. [41] noted that since OT implies key agreement, this establishes a separation

between symmetric cryptography and OT. Therefore, it is not possible to generate OT

using only symmetric cryptography, as one could potentially use one-way functions to

implement key agreement through the OT construction. This poses a threat to all classical

OT protocols [13, 93, 94] that rely on mathematical assumptions that can be provably

broken by a quantum computer [29].

Aside from the security issue, asymmetric cryptography tends to be computationally

more complex than symmetric cryptography, creating problems with speed when a large

number of OTs are required. The classical post-quantum approach aims to find protocols

that are resistant to quantum computer attacks, but these protocols are still based on

computational complexity problems and are not necessarily less computationally expen-

sive than the previously mentioned protocols.

In parallel to the classical post-quantum approach, the field of quantum cryptography

has attempted to address this security issue by developing OT protocols based on quan-

tum technologies. Interestingly, Wiesner proposed a similar concept more than a decade

before Rabin’s classical OT was published in 1981 [55]. At the time, Wiesner’s pro-

posal was rejected for publication due to a lack of acceptance in the research community.

However, the first published quantum OT (QOT) protocol, known as the BBCS (Bennett-

Brassard-Crépeau-Skubiszewska) protocol [6], was not presented until 1992. There is a key

difference between classical and quantum OT from a security perspective: quantum OT

has been proved to be possible under the assumption of only the existence of quantum-

hard one-way functions [38, 39], meaning it requires weaker security assumptions than

27

classical OT.

In this chapter, we delve into the subject of quantum oblivious transfer (OT). Our

focus is on several key OT protocols, their security models, and underlying assumptions.

To the best of our knowledge, there is no existing survey that is solely dedicated to

quantum OT protocols. Typically, these protocols are analysed as part of broader surveys

on “quantum cryptography”, resulting in a less in-depth examination of the topic. For

further reference, we have included some comprehensive reviews on the broader subject

of quantum cryptography in [30, 95–101].

The structure of this chapter is as follows: first, we provide a brief overview of the

impossibility results related to quantum OT. Then, we delve into the exposition of some

of the most well-known quantum OT protocols. Finally, we offer a brief overview of OT

protocols that are not covered in detail in this thesis.

3.1 Impossibility results

The emergence of quantum oblivious transfer (QOT) was closely linked to the development

of quantum bit commitment (QBC). In fact, the first proposed QOT protocol (BBCS

[6]) reduces QOT to QBC, which sets a clear distinction between classical and quantum

protocols. While classical bit commitment (BC) can be reduced to classical oblivious

transfer (OT) [57], the reverse is not true using only classical communication [102]. As a

result, Yao’s proof [103] of the BBCS protocol [6] highlights an enhanced characteristic of

quantum communications: the equivalence between QOT and QBC - they can be reduced

to each other - a relationship that is not present in the classical realm.

At the time of the BBCS protocol, researchers aimed to achieve unconditionally secure

quantum oblivious transfer (QOT). This was based on the potential for unconditionally

secure quantum bit commitment (QBC). One year after the proposal of BBCS, Brassard

et al. introduced the BCJL protocol [7]. However, it was later discovered that the protocol

had a flawed proof of its unconditional security [104]. This was followed by independent

proof from Lo and Chau [105] and Mayers [106] that unconditionally secure QBC is actu-

ally impossible. Despite this, the question of unconditionally secure QOT not based on

QBC remained open [95], even after the no-go theorems [105, 106]. Lo eventually proved

that unconditionally secure QOT is also impossible [107]. Lo’s conclusion was drawn as a

corollary of a more general result, which stated that secure two-party computations where

only one party learns the result cannot be unconditionally secure. Lo’s results sparked

a line of research on the possibility of two-sided secure two-party computation, which

was later proven impossible by Colbeck [108] and further extended in subsequent works

[109–111]. For further reading on the impossibility results presented by Lo, Chau and

28

Mayers, the reader can refer to the works [102, 112].

Although the impossibility results in quantum cryptography have been widely accepted,

some criticism has been raised regarding their generality [113–116]. Yuen [113] argues that

since there is no known characterization of all possible QBC protocols, it is logically im-

possible to have a general impossibility proof. Nevertheless, subsequent analyses [117–119]

have confirmed the general belief of the impossibility of unconditionally secure QBC. The

criticism was finally put to rest with the proof by Ariano et al. [120] in 2007, which covered

all conceivable protocols based on classical and quantum information theory. Subsequent

works have tried to simplify the proof [121–123] and translate it into categorical quantum

mechanics language [124–126].

In response to these impossibility results, the community has taken two main ap-

proaches:

1. Development of OT protocols under certain assumptions, such as limiting adver-

sary’s technology (e.g. noisy-storage model, relativistic protocols, isolated-qubit

model) or assuming the security of additional functionalities (e.g. bit commitment);

2. Development of OT protocols with a relaxed security definition, where the adversary

is allowed to extract some information about the honest party’s input/output with

a given probability. This approach gives rise to the concepts of weak OT and weak

private database query.

The next section will examine OT protocols that generate a special primitive known

as oblivious keys as an intermediate step.

3.2 BBCS-based protocols

This section investigates protocols that overcome the no-go theorems [105, 106] through

certain assumptions. These protocols are either based on one-way functions, considered

to be quantum-hard [38, 39, 127], or on the adversary’s technological or physical limita-

tions [128–133]. The latter differs qualitatively from the complexity-based assumptions

that post-quantum protocols rely on. Moreover, the security of these protocols is only

dependent on the validity of the assumptions during the protocol execution and remains

intact even if the assumptions are no longer valid later on. This property, known as ev-

erlasting security [134], is a defining feature of quantum protocols compared to classical

cryptography.

We begin by introducing the first quantum oblivious transfer (QOT) protocol and then

examine how it led to the development of two assumption models: FCOM−hybrid and the

limited-quantum-storage models.

29

3.2.1 BBCS protocol

The concept of “quantum conjugate coding” was introduced by Wiesner in 1983 [135].

It’s a key element in many quantum cryptographic protocols, including quantum oblivious

transfer [6]. The technique is also known as “quantum multiplexing” [136], “quantum

coding” [137], and “BB84 coding” [102]. It involves encoding classical information in two

non-orthogonal (conjugate) bases, leading to a property where measuring in one basis

erases information encoded in the other. So, when bit 0 and 1 are encoded by these two

bases, no measurement is able to perfectly distinguish the states. We will be using the

following bases in the two-dimensional Hilbert space H2:

• Computational basis: + :=
{
|0〉+ , |1〉+

}
;

• Hadamard basis: × :=
{
|0〉× , |1〉×

}
=
{

1√
2

(
|0〉+ + |1〉+

)
, 1√

2

(
|0〉+ − |1〉+

)}
.

Throughout this chapter, we simplify the notation by associating the basis set {+,×}
with the binary set {0, 1}: + is associated with 0 and × with 1. This allows us to

easily compare strings of bases between parties, i.e. the XOR operation (⊕) between two

vectors θA,θB ∈ {+,×}n is defined as the XOR operation between the corresponding

binary vectors θA,θB ∈ {0, 1}n.

Protocol [6]. The first proposal for a quantum oblivious transfer protocol, known as

Bennett-Brassard-Crépeau-Skubiszewska (BBCS), is shown in Figure 3.1. It utilizes the

quantum conjugate coding technique. The first phase of the BBCS QOT protocol, re-

ferred to as the BB84 phase, consists of Alice encoding a set of qubits that are randomly

measured by Bob. The parties then use Bob’s output bits and Alice’s random elements

to generate a special type of key, known as oblivious key. Alice reveals her bases θA to

Bob to achieve this. Using the oblivious key as a resource and a two-universal family

of hash functions F, Alice can then obliviously send one of the messages m0,m1 to Bob,

ensuring he is only able to know one of the messages. Recall, we use the notation s←$ S

to describe a situation where an element s is drawn uniformly at random from the set S.

Oblivious keys. The term “oblivious key” was first used by Fehr and Schaffner [90] in

reference to random OT. The notion was refined by Jakobi et al. [138] for implementing

private database queries (PDQ). In the BBCS protocol, oblivious keys are used as a

resource to perform OT. Like standard encryption keys, they enable the performance

of OT. In other words, encryption methods consume standard keys and OT methods

consume oblivious keys. The concept of oblivious keys applied to OT protocols was

recently presented by Lemus et al. [139]. We can define it as follows.

30

ΠBBCS protocol

Parameters: n, security parameter; two-universal family of hash functions F from
{0, 1}n/2 to {0, 1}l.
Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

BB84 phase:

1. Alice generates random bits xA ←$ {0, 1}n and random bases θA ←$ {+,×}n.
Sends the state

∣∣xA
〉
θA

to Bob.

2. Bob randomly chooses bases θB ←$ {+,×}n to measure the received qubits.
We denote by xB his output bits.

Oblivious key phase:

3. Alice reveals to Bob the bases θA used during the BB84 phase and sets his
oblivious key to okA := xA.

4. Bob computes eB = θB ⊕ θA and sets okB := xB.

Transfer phase:

5. Bob defines I0 = {i : eBi = 0} and I1 = {i : eBi = 1} and sends the (Ib, Ib⊕1) to
Alice.

6. Alice picks two uniformly random hash functions f0, f1 ∈ F, computes the
pair of strings (s0, s1) as si = mi ⊕ fi(okAIb⊕i) and sends the pairs (f0, f1) and
(s0, s1) to Bob.

7. Bob computes mb = sb ⊕ fi(okBI0).

Alice’s output: ⊥.
Bob’s output: mb.

Figure 3.1: BBCS OT protocol.

Definition 7 (Oblivious key). An oblivious key shared between two parties, Alice and

Bob, is a tuple ok :=
(
okA, (okB, eB)

)
where okA is Alice’s key, okB is Bob’s key and eB is

Bob’s signal string. eB indicates which indexes of okA and okB are correlated and which

indexes are uncorrelated, i.e. eBi = 0 when the corresponding indexes are correlated and

eBi = 1 when they are not.

Note that, for some index i, when two index elements okAi and okBi are correlated,

31

okAi = okBi . However, when they are uncorrelated, they are drawn independently. This

means that both index elements may either be equal or different. Consider the following

oblivious key ok = (001101101101, (000101001100, 101000110001)) as an example. We

can check it is a well-structured oblivious key:

okA : 0 0 1 1 0 1 1 0 1 1 0 1

okB : 0 0 0 1 0 1 0 0 1 1 0 0

eB : 1 0 1 0 0 0 1 1 0 0 0 1

ok.

It is worth stressing that oblivious keys are independent of the sender’s messagesm0,m1

and are not the same as random OT. In fact, as Alice does not know the groups of indexes

I0 and I1 computed by Bob after the basis revelation, Alice does not have her messages

fully defined. A similar concept was defined by König et al. [130] under the name of weak

string erasure.

Security. Regarding security, the BBCS protocol provides unconditional security against

dishonest Alice, as she only receives some set of indexes I0 from Bob. However, it is

insecure against dishonest Bob, who can carry out a memory attack and obtain complete

knowledge of both messages m0 and m1 undetected [6]. In the memory attack, Bob delays

his measurements in step 2 until after step 3. This requires quantum memory, which is

why it’s called the memory attack. To mitigate this issue, the authors suggest forcing Bob

to measure the received states at step 2. In subsequent sections, two common approaches

to tackle this security flaw are presented: either by assuming the existence of commitments

or by setting physical constraints that prevent Bob from delaying his measurements.

3.2.2 BBCS in the FCOM−hybrid model

As previously discussed, the BBCS protocol needs Bob to measure his qubits in step 2 for

security. A solution to this issue, as proposed in [6], is the use of a commitment scheme.

This approach results in a FCOM-hybrid model, where FCOM refers to any commitment

scheme (including ideal functionalities)1.

Protocol. The modified BBCS (Figure 3.2) adds a cut and choose step using commitment

scheme COM. In this step, Bob commits to the measurement bases and output bits from

the BB84 phase. Alice then selects a subset of qubits to verify, and Bob reveals the

corresponding commitments. If no inconsistencies are found, the protocol continues. To

1The notation FCOM is commonly used for ideal functionalities. However, for simplicity, we use
FCOM to refer to any commitment scheme (including the ideal commitment functionality).

32

ΠBBCS
FCOM

protocol

Parameters: n, security parameter; F two-universal family of hash functions.
Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

BB84 phase: Same as in ΠBBCS (Figure 3.1).

Cut and choose phase:

3. Bob commits to the bases used and the measured bits, i.e. COM
(
θB,xB

)
,

and sends to Alice.

4. Alice asks Bob to open a subset T of commitments (e.g. n/2 elements) and
receives {θBi , xBi }i∈T .

5. In case any opening is not correct or xBi 6= xAi for θBi = θAi , abort. Otherwise,
proceed.

Oblivious key phase: Same as in ΠBBCS (Figure 3.1).

Transfer phase: Same as in ΠBBCS (Figure 3.1).

Alice’s output: ⊥.
Bob’s output: mb.

Figure 3.2: BBCS OT protocol in the FCOM−hybrid model.

ensure security, the size of the tested subset must be proportional to n to guarantee Bob’s

measurement with high probability in n.

Security. The security of the modified BBCS protocol has been extensively studied in a

long line of research [6, 37–39, 42, 90, 103, 140–144]. Early studies from the 1990s focused

on analysing security against limited adversaries who only made individual measurements

[141]. Later, Yao [103] showed its security against general adversaries capable of fully co-

herent measurements. However, these initial works [103, 141, 142] lacked a comprehensive

security definition and relied on weak security measures like Collision Entropy and Mutual

Information [145, 146]. In modern quantum cryptography, the protocol’s security is es-

tablished in quantum simulation-paradigm frameworks [37, 42, 90, 130] using a simulator

to show that a real execution is indistinguishable from an ideal, secure execution.

Desirable worst-case security measures for quantum oblivious transfer (QOT) were

applied a decade later [80, 147]. These were based on the concept of min-entropy [145,

33

146], Hmin, which, intuitively, reflects the maximum probability of an event to happen. To

prove security against dishonest Bob, one is interested in measuring Bob’s min-entropy

on Alice’s oblivious key okA given any quantum side information E he may have, i.e.

Hmin(okA|E). Informally, for a bipartite classical-quantum state ρXE the conditional min-

entropy Hmin(X|E) is given by

Hmin(X|E)ρXE := − logPguess(X|E),

where Pguess(X|E) is the maximum probability the adversary can guess x given all possible

measurements. Damg̊ard et al. [37] proved the stand-alone QOT security using this min-

entropy measure and Fehr and Schaffner’s [90] quantum simulation-paradigm framework.

Their argument to prove the security of the protocol against dishonest Bob can be summa-

rized as follows. The cut and choose phase ensures that Bob’s conditional min-entropy on

the elements of okA belonging to I1 (indexes with uncorrelated elements) is lower-bounded

by some value that is proportional to the security parameter, i.e. Hmin(okAI1|E) ≥ nλ for

some λ > 0. Note that this is equivalent to derive an upper bound on the guessing

probability Pguess(ok
A
I1
|E) ≤ 2−nλ. Having deduced an expression for λ, they proceed by

applying a random hash function f from a two-universal family F, f ←$ F. This final step

ensures that f(okAI1) is statistically indistinguishable from uniform (privacy amplification

theorem [147–149]). The proof provided by Damg̊ard et al. [37] was extended by Unruh

[42] to the quantum Universal Composable (UC) model with ideal commitments. Now, a

natural question arises:

Which commitment schemes can be used to render simulation-based security?

Commitment scheme. The work by Aaronson [127] provides non-constructive evi-

dence “that collision-resistant hashing might still be possible in a quantum setting”, which

supports the use of commitment schemes based on quantum-hard one-way functions in

ΠBBCS
FCOM

. It has been demonstrated that any one-way function, including quantum-hard

ones, can be used to construct commitment schemes [150–152]. However, using a commit-

ment scheme based on a quantum-hard one-way function in ΠBBCS
FCOM

does not necessarily

lead to a simulation-secure protocol. This is due to the difficulty or impossibility of

simulation-based proof due to the nature of the commitment scheme. For more informa-

tion, see [38].

For a commitment scheme to render simulation-based security, the simulator in its

proof must have access to two intriguing properties: extractability and equivocality. Ex-

tractability allows the simulator to obtain the committed value from a malicious com-

mitter, while equivocality enables the simulator to modify the committed value later.

34

Despite the counter-intuitive nature of using a commitment scheme where we can violate

both security properties (hiding and biding properties), these properties are crucial for

the scheme’s security. The extractability is used to prove security against the dishonest

sender, and equivocality is used to prove security against the dishonest receiver. There

are proposals in the literature for commitment schemes COM with these properties based

on:

• Quantum-hard one-way functions [38, 39];

• Common Reference String (CRS) model [42, 91];

• Bounded-quantum-storage model [153];

• Quantum hardness of the Learning With Errors assumption [37].

Composability. The integration of secure OT executions in secure multiparty protocols

[56] is critical to ensuring security, as improper integration could lead to security breaches.

Although it seems intuitive to assume that a secure OT protocol can be integrated within

more complex protocols, proving this is highly non-trivial as it is not clear a priori under

which circumstances protocols can be composed [154].

To address this challenge, the development of simulation-based security was introduced.

However, simulation-based security alone is not sufficient for composability, as a compos-

ability framework is also necessary [154]. Several composability frameworks have been

proposed in the literature. Fehr and Schaffner [90] proposed a framework for sequential

composition of quantum protocols in a classical environment. Ben-Or and Mayers [155]

and Unruh [42, 156] extended the classical Universal Composability model [86] to a quan-

tum setting, allowing concurrent composability. Maurer and Renner [157] developed a

more general composability framework that accommodates various models of computa-

tion, communication, and adversary behavior. Recently, Broadbent and Karvonen [126]

introduced an abstract model of composable security in terms of category theory. As far

as we are aware, the composable security of the protocol ΠBBCS
FCOM

has been proven in the

Fehr and Schaffner model [90] by Damg̊ard et al. [37] and in the quantum-UC model by

Unruh [42].

3.2.3 BBCS in the limited-quantum-storage model

In this section, we review protocols based on the limited-quantum-storage model. These

protocols sidestep the no-go theorems by relying on reasonable assumptions about the

storage capacities of both parties. There are two main approaches within this model.

35

The first, the bounded-storage model, was introduced by Damg̊ard et al. [128], who

assumed that parties can store only a limited number of qubits. The second approach,

the noisy-storage model, was initiated by Wehner et al. [129], who assumed that parties

can store all qubits but they are unstable, i.e., they have imperfect, noisy storage that

results in some decoherence. Both models force adversaries to use their quantum memories

as both parties have to wait a predetermined time (∆t) during the protocol.

3.2.4 Bounded-quantum-storage model

In the bounded-quantum-storage (BQS) model, we assume that adversaries can only store

a fraction 0 < γ < 1 of the transmitted qubits during the waiting time ∆t. The adversary’s

storage capacity is limited to q = nγ qubits. γ is referred to as the storage rate.

Protocol. The protocol in the BQS model, ΠBBCS
bqs , is very similar to the BBCS pro-

tocol ΠBBCS presented in Figure 3.1. The difference is that both parties have to wait a

predetermined time (∆t) after step 2. This protocol is presented in Figure 3.3.

ΠBBCS
bqs protocol

Parameters: n, security parameter; F two-universal family of hash functions.
Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

BB84 phase: Same as in ΠBBCS (Figure 3.1).

Waiting time phase:

3. Both parties wait time ∆t.

Oblivious key phase: Same as in ΠBBCS (Figure 3.1).

Transfer phase: Same as in ΠBBCS (Figure 3.1).

Alice’s output: ⊥.
Bob’s output: mb.

Figure 3.3: BBCS OT protocol in the bounded-quantum-storage model.

Security. In this section, we focus on security against dishonest Bob in the BQS model.

The justification for security against dishonest Alice follows from the original BBCS pro-

36

tocol, as detailed in Section 3.2.1.

In the BQS model, the waiting time (∆t) prevents Bob from holding a significant

portion of qubits until Alice reveals the bases choices θA used during the BB84 phase.

This is because Bob is forced to measure a fraction of the qubits, causing him to lose

information about Alice’s bases θA.

Damg̊ard et al. [147] showed that, with overwhelming probability, the loss of informa-

tion about Alice’s oblivious key (okAI1) is described by the min-entropy lower bound:

Hmin(okAI1|E) ≥ 1

4
n− γn− l − 1.

Similar to the FCOM−hybrid model, the min-entropy value must be proportional to the

security parameter n. To ensure security, an upper bound on the fraction of qubits that

can be stored by the receiver must be set, i.e. γ < 1
4
.

König et al. [130] improved the upper bound to γ < 1
2

and showed that the BQS model

is a special case of the noisy-quantum-storage model. Further, Mandayam and Wehner

[158] presented a protocol that remains secure even when an adversary cannot store any

fraction of the transmitted pulses, using higher-dimensional mutually unbiased bases. In

this latter work, the storage rate γ approaches 1 with increasing dimension.

Composability. The security of the protocol ΠBBCS
bqs was initially proven by Damg̊ard

et al. [128, 147] under the stand-alone security model [159]. However, this model does

not guarantee the composability of the protocol. The sequential composability was later

established by Wehner and Wullschleger [159] in a simulation-based framework and by

Fehr and Schaffner in a sequential composability framework.

Unruh [153] extended the quantum-UC framework and combined it with the BQS

model to develop BQS-UC security. In this framework, composability is ensured while

keeping track of the quantum memory bound used by the machines. Under this frame-

work, Unruh follows a different approach as he does not use the protocol ΠBBCS
bqs (Fig-

ure 3.3). Unruh presented a BQS-UC secure commitment protocol and combined it with

the ΠBBCS
FCOM

protocol to obtain a constant-round protocol that emulates any two-party

functionality in a BQS-UC secure manner.

3.2.5 Noisy-quantum-storage model

The noisy-quantum-storage (NQS) model is a generalization of the bounded-quantum-

storage (BQS) model. In the NQS model, the adversary is allowed to retain any fraction

ν of the transmitted qubits, including the case where ν = 1. However, the adversary’s

quantum memory is assumed to be noisy, meaning that qubits cannot be stored for a

37

certain amount of time (∆t) without undergoing decoherence [130].

Mora formally, the decoherence of qubits in the noisy storage can be described by a

completely positive trace-preserving (CPTP) map, also known as a channel, C : P(Hin)→
P(Hout). The Hilbert space of the stored qubits before and after the storage period (∆t)

is represented by Hin and Hout, respectively. P(H) represents the set of positive semi-

definite operators with unitary trace acting on a Hilbert space H. The channel C takes a

quantum state ρ ∈ Hin at time t and returns a quantum state ρ′ ∈ Hout at time t+ ∆t.

With this formulation, it’s clear that the BQS model is a subset of the NQS. In BQS,

the channel takes the form C = 1⊗νn, where the storage rate ν is the fraction of transmitted

qubits stored in the quantum memory. The most commonly studied scenario is restricted

to n−fold quantum channels (C = N⊗νn), where the channel N is applied independently

to each stored qubit [129, 130, 160]. In this scenario, specific security parameters can be

derived.

Protocols. The BQS model protocol ΠBBCS
bqs is considered secure in the NQS model [160].

However, the first proposed protocol analysed in this general NQS model was developed

by König et al. [130] and draws inspiration from classical OT in the bounded-classical-

storage model [161–163]. König et al.’s protocol uses two key techniques in its classical

post-processing phase: encoding of sets and interactive hashing. The encoding of sets

involves an injective function Enc : 0, 1t → T , where T is a set of all subsets of [n] with

size n/4. The interactive hashing is a two-party protocol between Alice and Bob where

Bob inputs a message W t and both parties receive messages W t
0 and W t

1, with one of them

equal to W t, but with the index unknown to Alice and the choice randomly determined.

In this section, we present the näıve version of the protocol introduced by König et al.

in [130]. Although both ΠBBCS
bqs and ΠBBCS

nqs are distinct, we maintain a similar notation

for ease of comparison. The protocol ΠBBCS
nqs is outlined in Figure 3.4. The first two

phases (BB84 and Waiting time) are the same as in ΠBBCS
bqs (Figure 3.3).

After the Waiting time phase, both parties generate a resource similar to oblivious

keys, known as weak string erasure (WSE). Alice holds the entire key okA, while Bob

holds one-fourth of it, represented by the tuple (I, okB := okAI), where I is the set of

indices they measured in the same basis and has size |I| = n
4
. Using a method to encode

sets into binary strings and interactive hashing, both parties generate two index subsets, I0

and I1. These subsets, along with two 2-universal hash functions, allow Alice to compute

her output messages (m0,m1) and Bob to obtain his bit choice b and the corresponding

message mb. For more details on encoding sets and interactive hashing, refer to [162] and

[163].

38

Näıve ΠBBCS
nqs protocol

Parameters: n, security parameter; F two-universal family of hash functions.
Alice’s input: ⊥.
Bob’s input: ⊥.

BB84 phase: Same as in ΠBBCS (Figure 3.1).

Waiting time phase: Same as in ΠBBCS
bqs (Figure 3.3).

Weak String Erasure phase: Similar to Oblivious key phase of ΠBBCS (Figure 3.1).

4. Alice reveals to Bob the bases θA used during the BB84 phase and sets her
oblivious key to okA := xA.

5. Bob computes eB = θB ⊕ θA. Then, he defines I = {i : eBi = 0} and sets
okB := xB

I .

6. If |I| < n/4, Bob randomly adds elements to I and pads the corresponding
positions in okB with 0s. Otherwise, he randomly truncates I to size n/4, and
deletes the corresponding values in okB.

Interactive hashing phase:

7. Alice and Bob execute interactive hashing with Bob’s input W to be equal
to a description of I = Enc(W). They interpret the outputs W0 and W1 as
descriptions of subsets I0 and I1 of [n].

Transfer phase:

5. Alice generates random f0, f1 ←$ F and sends them to Bob.

6. Alice computes the pair of messages (m0,m1) as mi = fi(ok
A
Ii

).

7. Bob computes b ∈ {0, 1} by comparing I = Ib and computes mb = fb(ok
B
I).

S output: (m0,m1) ∈ {0, 1}l (two messages).
R output: (b,mb) where b ∈ {0, 1} (bit choice).

Figure 3.4: BBCS OT protocol in the noisy-quantum-storage model.

Security. The first proofs in the NQS model for the original BQS protocol (Figure 3.3)

were developed by Schaffner, Wehner, and Terhal [129, 164]. However, these initial works

only considered individual-storage attacks, in which the adversary treats all incoming

qubits equally. Schaffner later proved [160] the security of ΠBBCS
bqs against arbitrary attacks

39

in the more general NQS model defined by König et al. [130].

In the general NQS model, the security of both protocols ΠBBCS
bqs and ΠBBCS

nqs (Fig-

ures 3.3 and 3.4) against a dishonest receiver relies on setting a lower-bound for the

min-entropy of the “unknown” key okAI1−b given the receiver’s quantum side information,

represented by the output of the quantum channel C applied to the received states. More

formally, one has to lower-bound the expression Hmin

(
okAI1−b|C (Qin)

)
, where Qin denotes

the subsystem of the received states before undergoing decoherence. This lower-bound,

proven in [130], depends on the receiver’s maximal success probability P Csucc(n) of correctly

decoding a randomly chosen n-bit string x ∈ {0, 1}n sent over the quantum channel C.
For particular channels C = N⊗ν , König et al. [130] concluded that security in the

NQS model can be obtained in case

cN · ν <
1

2
,

where cN is the classical capacity of quantum channels N satisfying a particular property

(strong-converse property).

3.2.6 Experimental attacks

While QKD and QOT protocols are proven to be secure in theory, their experimental

implementations may contain loopholes that undermine their security. The mismatch

between theory and practice stems from the fact that theoretical proofs often assume the

honest parties’ physical apparatus is invulnerable to hacking. However, flaws in both the

generation and measurement of qubits can be used to carry out various quantum attacks.

For a comprehensive overview of QKD attacks and countermeasures, we refer the reader

to the review articles by Lo et al. [165] and Pirandola et al. [166]. In this context, we

briefly examine the impact of such attacks on QOT protocols based on BBCS.

QOT attacks

It is important to stress that there is a fundamental difference between QKD and QOT

protocols. In QKD, the parties have a mutual trust and can work together to identify

an external attack, while in QOT, the parties are inherently distrustful of each other.

External attacks in QKD presume that the attacker has physical access to the quantum

channel and can launch a man-in-the-middle attack. On the other hand, QOT protocols

are inherently linked through a quantum channel, thus QOT attacks may require less

effort to launch as the attacker is already utilizing the channel.

According to the security requirements of QOT protocols, it is crucial for both Alice and

Bob to maintain their respective privacy. In particular, Alice should not know Bob’s bit b,

40

and Bob should not have knowledge of m1−b. The security of BBCS-based QOT protocols

depends on the security of oblivious keys, which requires Alice not to have information

about the set of indexes known to Bob (i.e. eB), and Bob having limited knowledge of

Alice’s key (i.e. okA). These two pieces of information can be easily obtained by the

adversary if they have access to the quantum bases used by either party (i.e. θA or θB).

For instance, Alice can compute eB by taking the XOR of θB and θA, while Bob can

obtain okA by measuring all the qubits with Alice’s bases θA. Therefore, the objective of

the adversary is to gain information (or control) about the set of bases used by the other

party through their quantum channel.

Two common attacks in quantum systems are faked-state attacks (FSA) and trojan-

horse attacks (THA) [167, 168]. FSA targets measurement apparatus only, while THA can

target both preparation and measurement apparatus. In a prepare-and-measure setting,

FSA can only be executed by Alice, while THA can be executed by either party. In this

context, let’s examine how these two attacks can be applied to both ΠBBCS
bqs and ΠBBCS

FCOM

protocols. The attacks on ΠBBCS
nqs follow the same reasoning but the notation vary slightly.

We denote by θ̃BJ ← Aqok(J) Alice’s quantum hacking procedure (Aqok(J)) that breaks

the security requirements of oblivious keys and provides her with Bob’s bases (θ̃BJ) from

index set J . Similarly for Bob, i.e. θ̃AJ ← Bqok(J).
ΠA

FSA attack

Alice’s input: set of indexes J of size q.

1. Alice performs some faked-state attack
{
θ̃Bj

}
j∈J
← Aqok(J) where θ̃Bj ∈

{+,×} or θ̃Bj = ⊥.

2. If ∃j ∈ J such that θ̃Bj 6= ⊥:

(a) b = 0 if j ∈ Ib, ;

(b) b = 1 if j /∈ Ib.

3. Otherwise, sets b = ⊥.

Alice’s output: b.

Figure 3.5: Alice faked-state attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols.

FSA attacks. The attacks described by Jain et al. [169] involve well-crafted optical sig-

41

nals that allow Alice to manipulate Bob’s measurement outcomes. When Alice and Bob’s

bases coincide, Bob’s detector clicks. Conversely, when their bases are orthogonal, Bob

does not detect an event (⊥). Alice exploits this by forcing Bob to only use measurements

where their bases coincide, thus gaining full knowledge of Bob’s bases. By discarding the

indexes corresponding to no detection events and using the others in the protocol, Alice

can easily distinguish between I0 and I1.

It’s worth noting that Alice only needs to successfully manipulate one measurement

round in order to guess one basis, which occurs with high probability after a sufficient

number of attacks q. The probability of success for Alice in q rounds is calculated as

follows:

P [Successful attack by Alice in q rounds] = 1−
(

1

2

)q
.

With knowledge of Bob’s basis, Alice can determine to which set (I0 or I1) a corre-

sponding index (j) belongs. As Bob computes his message mb using the set where their

basis coincides and Alice computes both messages m0 and m1 using both sets, Alice can

determine Bob’s message mb by identifying which message came from the set to which j

belongs. The attack

ΠA
FSA against both ΠBBCS

bqs and ΠBBCS
FCOM

is summarized in Figure 3.5.

ΠA
THA attack

Alice’s input: one index element, j.

1. Alice performs some trojan-horse attack
{
θ̃Bj

}
← Aqok(i) where θ̃Bj ∈ {+,×}.

2. Alice compares the received basis θ̃Bj with her corresponding base θAj . Denote

by ẽBj := θ̃Bj ⊕ θAj .

3. Upon receiving Ib from R:

(a) b = ẽBj if j ∈ Ib;
(b) b = 1− ẽBj if j /∈ Ib.

Alice’s output: b.

Figure 3.6: Alice trojan-horse attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols.

THA attacks. These attacks are executed by sending bright optical signals into the

target equipment and analysing the different reflections to determine the bases in use.

42

Similarly to the FSA, Alice only needs to identify one of Bob’s bases to compromise

the system. By comparing her basis with Bob’s basis for that particular round, she can

determine Bob’s bit b. This attack is depicted in Figure 3.6 as

ΠA
THA.

Bob’s THA attack, on the other hand, is more challenging. He must not only accurately

guess all of Alice’s bases but also properly measure the corresponding qubits after revealing

the sender’s bases. This task is much more difficult without the assistance of quantum

memories. Bob’s attack is illustrated in Figure 3.7 as

ΠB
THA.

ΠB
THA attack

Parameters: n, security parameter..

1. Bob performs some trojan-horse attack to all qubits sent by Alice, i.e.{
θ̃Ai

}
i∈[n]
← Bqok([n]) where θ̃Ai ∈ {+,×}.

2. Bob measures the received states
∣∣xA
〉
θA with the correct bases,

{
θ̃Ai

}
i∈[n]

.

Bob’s output: okA.

Figure 3.7: Bob trojan-horse attack to ΠBBCS
bqs and ΠBBCS

FCOM
protocols.

Countermeasures

We have seen how two well-known quantum hacking techniques can undermine the secu-

rity of oblivious keys and, consequently, the security of oblivious transfer. Fortunately,

there are countermeasures available to prevent these quantum hacking techniques from

compromising the security of oblivious keys and, in turn, oblivious transfer. These coun-

termeasures can be classified into two categories: security patches designed to address

specific vulnerabilities and novel protocols that allow for the use of faulty devices.

Regarding the two presented possible attacks, it is commonly possible to implement

security patches that prevent them. The FSA attack can be mitigated by placing an

additional detector (watchdog) at the entrance of the receiver’s measurement device to

monitor for malicious radiation that blinds the detector. On the other hand, the THA

attack can be prevented by using an isolator at the entrance of both parties’ devices.

However, as noted by Jain et al. [169], these countermeasures may not be foolproof in

practice as they only offer perfect protection if the isolators and watchdogs are effective

at all relevant frequencies.

43

The study of security patches for each technological vulnerability is an active area of

research [170]. However, this approach requires a challenging task of making experimen-

tal implementations match ideal protocols, leading to potential security vulnerabilities.

Instead, it is more advantageous to develop protocols that already account for faulty

devices and are robust against quantum hacking attacks. This is the objective of device-

independent (DI) cryptography, where quantum devices are treated as black-boxes and

the assumption that they cannot be controlled by the adversary is dropped [171, 172].

This section provides a brief overview of the current advancements in DI protocols. For

a more comprehensive understanding, refer to the original works.

Kaniewski-Wehner DI protocol [173]. The first DI protocol for QOT was proposed

by Kaniewski and Wehner [173] and further improved by Ribeiro et al. in [174]. The

protocol was proved to be secure in the noisy-quantum-storage (NQS) model as it uses

the original NQS protocol ΠBBCS
nqs (Figure 3.4) for trusted devices.

The protocol considers two scenarios. The first assumes that the devices have a mem-

oryless behavior every time they are used, which enables the devices to be tested in-

dependently from the actual protocol, resulting in a DI protocol with two phases: a

device-testing phase and a protocol phase. Under this memoryless assumption, the pro-

tocol is proven to be secure against general attacks using proof techniques from [130].

The second scenario removes the memoryless assumption, making it unrealistic to test

the devices in advance, as their behavior can change. As a result, the structure of the

initial DI protocol must be altered, interweaving the rounds of the device-testing phase

with the rounds of the protocol phase.

As is typical in DI protocols, the DI property arises from a violation of Bell inequalities

[175] that ensures a certain level of entanglement. In the protocol phase, the entanglement-

based variant of ΠBBCS
nqs must be used, with Alice preparing maximally entangled states

|Φ+〉〈Φ+|, where |Φ+〉 = 1√
2
(|00〉+ |11〉). The Bell inequality used in this case is based on

the Clauser-Holt-Shimony-Horne (CHSH) inequality [176].

Broadbent-Yuen DI protocol [177]. Recently, Broadbent and Yuen [177] proposed

a DI protocol in the BQS (bounded-quantum-storage) model using ΠBBCS
bqs (Figure 3.3).

Like the work of Kaniewski and Wehner [173], the protocol is secure under the memoryless

assumption, but with a difference. Unlike Kaniewski and Wehner’s work, which relies on

the violation of Bell inequalities [175] for security, Broadbent and Yuen’s protocol does not

require non-communication assumptions. Instead, it employs a recent self-testing protocol

[178, 179] that is based on the hardness of the Learning with Errors (LWE) problem [180].

This approach allows the protocol to be secure without relying on the violation of Bell

44

inequalities.

Ribeiro-Wehner MDI protocol [181]. In the work by Ribeiro and Wehner [181], an

OT protocol in the measurement-device-independent (MDI) regime [182] was developed to

tackle the technological difficulties in implementing DI protocols [183]. The MDI regime

assumes that the measurement devices are untrusted while the sources are trusted. This

protocol was motivated by the lack of security proof in the DI setting and the vulnerability

of non-device-independent protocols to attacks on the measurement devices [184]. The

presented protocol follows the research line of König et al. [130] and is also proved to be

secure in the NQS model.

The protocol starts with a weak string erasure (MDI-WSE) phase, similar to the ap-

proach taken by König et al. [130]. In this phase, Alice and Bob send random states∣∣xA
〉
θA

and
∣∣xB
〉
θB

to an external agent who performs a Bell measurement and announces

the result. Bob adjusts his bit to match Alice’s based on the announcement. Subse-

quently, both parties proceed with the ΠBBCS
nqs protocol (Figure 3.4) from the waiting

time phase onward. A similar protocol was proposed by Zhou et al. [185] which includes

error estimation to enhance security.

3.3 Conclusion

Since the proposal of quantum OT 40 years ago, active and fruitful research on this topic

has deepened our understanding of the limits and advantages of quantum cryptography. It

was first proved that two fundamental primitives, bit commitment and oblivious transfer,

are equivalent in the quantum setting, a relation that does not hold classically. Unfor-

tunately, it was also proven that both primitives cannot be unconditionally secure in the

quantum setting, matching the impossibility results in the classical setting. However, this

equivalence in the quantum setting implies that quantum OT requires weaker security

assumptions than classical OT. Quantum OT can be implemented solely with quantum-

hard one-way functions, whereas classical OT requires at least one-way functions with

trapdoors. This makes classical OT potentially more vulnerable to quantum computer

attacks and tendentiously less computationally efficient. Additionally, some quantum OT

implementations benefit from an important feature known as everlasting security, which

does not have a classical counterpart. It states that even if the security assumptions lose

validity after the protocol execution, the security of the protocol is not compromised. In

other words, quantum OT implementations are considered unconditionally secure after

the protocol execution.

In this chapter, we have discussed some of the most common assumptions used to

45

implement secure quantum OT. Hybrid approaches are based on both quantum physical

laws and computational complexity assumptions. Limited-quantum-storage approaches

offer secure solutions as long as the technological limitations are met during protocol

execution. In the next chapter, we will compare the security and efficiency of these

quantum OT protocols with their classical counterparts.

46

Chapter 4

Classical and quantum oblivious

transfer

Secure multiparty computation (SMC) has the potential to revolutionize data analysis

and computation by enabling multiple parties to compute any function while preserving

the privacy of their inputs. The security and efficiency of SMC protocols rely heavily on

the security and efficiency of oblivious transfer (OT). Thus, it is crucial to understand

the advantages and drawbacks of both classical and quantum OT protocols.

In this chapter, we begin by examining the security and efficiency of classical OT

protocols. Then, we compare these classical protocols with their quantum counterparts.

However, it is important to note that classical and quantum approaches utilize different

information medium and that classical technology is more established than quantum tech-

nology. These factors raise questions about the validity of comparing the two approaches.

In Chapter 3, we reviewed various quantum OT protocols and focused on BBCS-based

QOT protocols. These protocols offer a practical solution for performing OT within SMC

while being resistant to quantum computer attacks. The protocols are divided into two

separate phases: the oblivious key (precomputation) phase and the transfer phase. The

oblivious key phase uses quantum technologies and is independent of the parties’ input

elements (m0, m1 and b), while the transfer phase only requires classical communication

and is based on the precomputed elements (oblivious keys). It can be argued that the

precomputation phase is not so hungry-efficient as the transfer phase, as it is independent

of the parties’ inputs and can be performed well ahead of an SMC execution. The classical

OT protocols can also be divided into these two phases, allowing for a comparison of the

transfer phase between quantum and classical approaches. Additionally, no concurrent

use of quantum equipment is necessary during the SMC execution.

47

4.1 Classical oblivious transfer

Let us start by presenting the Bellare-Micali (BM) OT protocol [2] based on public key

Diffie-Hellman. This exposition aims to shed some light on the issues related to classical

OT implementations. The security and efficiency issues explored in this section also apply

to most of the major classical protocols [13, 93, 94].

We consider Gq to be a subgroup of Z∗p with generator g and order q, where p is prime

and p = 2q+ 1. Also, we assume public knowledge on the value of some constant C ∈ Gq.

This constant guarantees that Bob follows the protocol. Also, for simplicity, we assume

the protocol uses a random oracle described as a function H. For comparison purposes

with quantum OT version presented in Chapter 3, we split the BM OT protocol into

two phases: precomputation phase and transfer phase. The first phase sets the necessary

resources to execute the oblivious transfer in the second phase. The BM OT protocol

ΠBM is shown in Fig. 4.1.

ΠBM protocol

Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

(Precomputation phase)

1. Bob randomly generates k ∈ Zq and computes gk.

2. Alice randomly generates r0, r1 ∈ Zq and computes gr0 and gr1 .

(Transfer phase)

3. Bob sets pkb := gk. Also, he computes pkb⊕1 = C · pk−1
b .

4. Bob sends both public keys (pk0, pk1) to Alice.

5. Alice checks if (pk0, pk1) were correctly generated by computing their product:
C = pk0 × pk1.

6. Alice computes and sends to Bob the two tuples: E0 = (gr0 , H(pkr00) ⊕ m0)
and E1 = (gr1 , H(pkr11)⊕m1) for some hash function H.

7. Bob is now able to compute H(pkrbb) and recover mb.

Alice’s output: ⊥.
Bob’s output: mb.

Figure 4.1: Bellare-Micali classical OT protocol divided into two phases [2].

48

4.1.1 Security issues

The security of the Bellare-Micali (BM) OT protocol depends on both concealing and

obliviousness properties. The concealing property is maintained as Bob does not send

to Alice any information that reveals his input bit choice b. The obliviousness property,

on the other hand, relies on Alice’s ability to keep the randomly generated elements r0

and r1 confidential. This property is compromised if Bob is able to compute the discrete

logarithm of gri (i = 0, 1) (discrete logarithm problem).

The hardness of the discrete logarithm problem on cyclic groups is fundamental to

several other protocols, making it imperative to understand its limitations. However, it

is still unproven whether there exists a polynomial-time algorithm that can compute r

from gr (r ∈ Zq) in a general cyclic group Gq with generator g and order q. The security

of the BM OT protocol assumes that Bob has limited computational power and is unable

to calculate the discrete logarithm of a generic number.

Although the generic discrete logarithm problem is not known to be tractable in

polynomial-time, there are specific cases where it is possible to compute it efficiently.

Indeed, the security of the discrete logarithm problem in cyclic groups can be compro-

mised if the structure of the group is not robust enough. For instance, if a prime p is

randomly generated without ensuring that p− 1 contains a big prime pb in its decompo-

sition, it is possible to use a divide-and-conquer technique [186] along with some other

methods (Shank’s method [187], Pollard’s rho [188], Pollard’s lambda [188]) to solve the

discrete logarithm problem. The efficiency of the algorithms depends on the size of pb; the

smaller pb, the faster the algorithm can solve the discrete logarithm problem. To avoid

these attacks, it is recommended to use safe primes, i.e., primes of the form p = 2q + 1

where q is also prime. However, finding safe primes is computationally more expensive

compared to finding regular primes.

The size of the prime numbers is also an important consideration. In [189], it is

reported that the number field sieve algorithm can compute the discrete logarithm in a

512-bit group after a week-long precomputation and in just one minute. So, by following

this method, after a week-long computation, Bob would be able to find both messages

m0 and m1 of the BM OT protocol in one minute. In an SMC scenario based on the Yao

approach [23], where each OT performed corresponds to one input bit of Alice and the

chosen group parameters are fixed, Bob would be able to get the keys corresponding to

both 0 and 1 bit and, consequently, he would be able to discover all Alice’s inputs. Hence,

at the expense of efficiency, it is necessary to use large prime numbers (2048-bit or larger)

that are resistant to these classical attacks.

We have just seen specific examples where it is possible to break the security of the OT

protocol using classical techniques. However, the larger threat to the security of OT and

49

many other asymmetric cryptographic protocols such as RSA, elliptic-curve cryptography,

and Diffie-Hellman key exchange is posed by quantum computers, which can efficiently

solve the general discrete logarithm problem. This was first demonstrated by Peter Shor in

his 1995 publication of a quantum algorithm that can solve both the prime factorization

and discrete logarithm problems in polynomial time [29]. Therefore, in the BM OT

protocol Bob would be able to perform two attacks with the help of a quantum computer:

Quantum attack 1:

1. Bob computes the discrete logarithm of grb⊕1 received from Alice using Shor’s algo-

rithm, i.e. rb⊕1 = logg g
rb⊕1 .

2. Bob is then able to compute H
(
(grb)k

)
= H(pkrbb) and H(pk

rb⊕1

b⊕1) and get both

messages mb and mb−1.

Quantum attack 2:

1. Bob computes the discrete logarithm of pkb⊕1 with the Shor’s algorithm, i.e. s =

logg pkb⊕1.

2. Bob is then able to compute H
(
(grb)k

)
= H(pkrbb) and H

(
(grb⊕1)s

)
= H(pk

rb⊕1

b⊕1) and

get both messages mb and mb⊕1.

The research literature mainly presents two approaches to address this issue: develop-

ing protocols with assumptions about the computational power of quantum computers,

or developing protocols that utilize quantum technology. The former approach, known as

post-quantum cryptography [190], often requires more demanding public-key cryptogra-

phy protocols due to the computational assumptions employed. Notably, these assump-

tions are yet unproven and have only been subject to a few years of scrutiny, making

them vulnerable to attack in the near future. The latter approach, referred to as quan-

tum cryptography [166], provides solutions without relying on asymmetric cryptography,

but significantly increases the cost of the necessary technological equipment. It’s crucial

to note that quantum protocols do not experience the intercept now, decipher later attack

(everlasting security) because their security is based on quantum theory. Conversely, this

type of attack is always a possibility in protocols that rely on computational assumptions.

4.1.2 Efficiency issues

In the previous section, we highlighted that increasing security through mitigation pro-

cesses always has an impact on efficiency. This is because generating secure primes is

more demanding, larger exponents and prime modules result in heavier computations,

50

and post-quantum solutions generally require stronger computational assumptions, lead-

ing to increased computational complexity.

Now, let’s examine the efficiency limitations of the BM OT protocol. To start, we

will consider the operations used in the protocol, including random number generation,

modular multiplication, modular inversion, modular exponentiation, hash function eval-

uation, and XOR operation. Of all these operations, modular exponentiation is the most

demanding, meaning that the complexity of BM OT is heavily influenced by the com-

plexity of modular exponentiation. The number of modular exponentiations performed

in each phase is summarized in Table 4.1.

Alice Bob

Precomputation phase 2 1

Transfer phase 2 1

Table 4.1: Number of modular exponentiations in the BM protocol for each phase.

One of the most efficient ways to perform general modular exponentiation with n-

bit numbers is to use a combination of square-and-multiply algorithm and Karatsuba

multiplication. The former has a complexity of O(n) multiplications, while the latter

has a complexity of O(n1.58). The overall complexity of this method is O(n2.58) n-bit

operations [191]. To overestimate the rate of OT generation, we’ll consider the time (in

CPU cycles) required to perform all modular exponentiation operations. The rate can be

calculated using the following expression:(Cmexp
Ccycles

×Nmexp

)−1

(4.1)

where Cmexp is the number of CPU cycles required to perform one modular exponen-

tiation, Ccycles is the CPU frequency (number of cycles per second), and Nmexp is the

number of modular exponentiations performed in the OT implementation. It’s important

to note that this expression only provides an overestimation, as it depends on both the

implementation of the modular exponentiation operation and the CPU frequency being

used.

Given a standard CPU operating at 2.5 GHz (Ccycles = 2.5 × 109 cycles per second)

and an efficient implementation of modular exponentiation (Cmexp ∼ 400, 000 CPU cycles)

[192], the BM OT protocol could perform at most ∼ 1041 BM OTs per second, as shown

in Fig. 4.2. This, however, is a loose overestimation of the number of OTs per second, as

it only takes into account the computational complexity of modular exponentiation and

51

Figure 4.2: Plot of expression (4.1) on the overestimation of OT rate against the number
of modular exponentiation operations required per OT.

52

assumes that other operations have minimal impact on computation time. Therefore, the

actual OT rate must be lower.

For comparison, a study in [3] reported that it takes around 18 ms to generate a Naor-

Pinkas OT [13] which requires 5 modular exponentiations, yielding a rate of 56 OTs per

second. These OT rates pose a serious challenge for SMC protocols that rely on OT,

such as the Yao SMC protocol [23]. The Yao protocol uses boolean circuits to compute a

desired functionality privately and requires half the number of input wires as the number

of required OTs. Using the rough OT rate estimation, the OT phase of the Yao protocol

with a 32, 000 input boolean circuit would take at least 16 seconds, and around 2 minutes

and 23 seconds using Naor-Pinkas OT rate. These execution times can become impractical

in deployment environments that require several rounds of circuit evaluation and require

higher OT rates.

4.1.3 OT extension protocols

To improve the efficiency of OT, one potential solution is to replace the computation-

intensive asymmetric cryptography with more efficient symmetric cryptography. Sym-

metric cryptography has the advantage of being faster than asymmetric cryptography. In

addition, all known quantum attacks to symmetric cryptography based on the Grover’s

algorithm only provide a quadratic advantage over classical approaches, which can be mit-

igated by doubling the size of the symmetric keys [190]. However, despite its efficiency,

symmetric cryptography is not enough for OT because it does not meet the asymmetric

cryptographic assumptions required by Impagliazzo and Rudich’s result [28]. Hence, OT

cannot be performed solely with symmetric cryptography methods.

To overcome the limitations imposed by Impagliazzo and Rudich’s result [28] on the use

of solely symmetric cryptography for OT, researchers have developed hybrid protocols that

combine both symmetric and asymmetric cryptography. Beaver [193] introduced the idea

of extending the number of OTs by using symmetric cryptography, once a small number

of base OTs are established using asymmetric cryptography. Although Beaver’s original

protocol was inefficient, it paved the way for more efficient implementations [3, 194–197].

Currently, one of the most efficient protocols can generate about 10 million OTs in 2.62

seconds [3]. The security of these protocols mainly relies on the security of the base OT

protocol and the use of quantum secure symmetric tools. However, it’s important to note

that the protocol analysed in Section 4.2.3 [3] is not secure against malicious parties and

should only be used in a semi-honest environment. To ensure security against malicious

parties, extra consistency check phases are necessary, increasing the complexity of the

protocol [4, 197], as discussed in Section 4.2.3.

53

4.2 Oblivious transfer complexity analysis

In this section, we compare the complexity of the transfer phase of an optimized version

of the BBCS-based QOT protocols (ΠBBCS
FCOM

and ΠBBCS
bqs) presented before and several well

known classical protocols. We start by explaining the optimized version..

4.2.1 Optimization

Recall that both ΠBBCS
FCOM

and ΠBBCS
bqs can be divided into two phases: the oblivious key

distribution phase (we also call it a precomputation phase) and the transfer phase. It is

interesting to note that both protocols follow the same steps in the transfer phase. We

present the transfer phase of both protocols in Figure 4.3. We slightly rewrite the protocol

by using only one hash function (H describes a random oracle) instead of two random

hash functions f0 and f1. This is done for comparison purposes and because, in practice,

H is implemented as a specific hash function, such as SHA.

ΠBBCS protocol

Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

Precomputation phase: Alice and Bob generate an oblivious key (okA, (okB, eB))
according to the corresponding procedure. ΠBBCS

FCOM
as in Figure 3.2 and ΠBBCS

bqs as
in Figure 3.3.

Transfer phase:

5. Bob defines I0 = {i : eBi = 0} and I1 = {i : eBi = 1} and sends the pair
(Ib, Ib⊕1) to Alice.

6. Alice computes the pair of strings (s0, s1) as si = mi ⊕ H(okAIb⊕i) and sends
to Bob.

7. Bob computes mb = sb ⊕H(okBI0).

Alice’s output: ⊥.
Bob’s output: mb.

Figure 4.3: Transfer phase of BBCS-based QOT protocols in the FCOM−hybrid model
and bounded-quantum-storage model.

In the first communication round of the protocol in Figure 4.3, Bob sends two sets

(Ib, Ib⊕1) to Alice (Step 5). This can be optimized by only sending one set (Ib), as Alice

54

can determine its complement (Ib = Ib⊕1) with just one set. This leads to the optimized

protocol (ΠBBCS
O) shown in Figure 4.4. This optimization results in lower bandwidth

requirements compared to the original transfer phase.

The size of the sets can be identified by a symmetric security parameter κ, as they

define the keys (okIi , i = 0, 1) used in the hash function H. For comparison, we consider

κ = 128. Also, the messages m0 and m1 can be viewed as garbled circuit keys, with a size

of l = 128, 192 or 256. If we assume l ∼ κ, the same number of bits are required. This

means that in Step 5, Bob only needs to send l bits to Alice, resulting in a reduction of

one fourth in the number of bits sent during the transfer phase.

ΠBBCS
O protocol

Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

Precomputation phase: Alice and Bob generate an oblivious key (okA, (okB, eB))
according to the corresponding procedure. ΠBBCS

FCOM
as in Figure 3.2 and ΠBBCS

bqs as
in Figure 3.3.

Transfer phase:

5. Bob defines I0 = {i : eBi = 0} and I1 = {i : eBi = 1} and sends only Ib to
Alice.

6. Alice computes the pair of strings (s0, s1) as si = mi ⊕ H(okAIb⊕i) and sends
to Bob.

7. Bob computes mb = sb ⊕H(okBI0).

Alice’s output: ⊥.
Bob’s output: mb.

Figure 4.4: Transfer phase of BBCS-based QOT protocols in the FCOM−hybrid model
and bounded-quantum-storage model.

To fairly compare the transfer phase of the ΠBBCS
O protocol with other classical proto-

cols, we divide classical protocols into precomputation and transfer phases. All steps that

are independent of the messages (m0 and m1) and the bit choice (b) are considered part of

the precomputation phase, while others are included in the transfer phase. The transfer

phase is more important to optimize as it is executed during the Yao GC protocol, while

the precomputation phase can be performed beforehand.

We stress we will only compare the complexity of different protocols’ transfer phase

55

because their precomputation phase rely on different technologies. Since quantum tech-

nologies are still in their infancy and constantly evolving, it is difficult to compare the

efficiency with classical approaches. However, the oblivious key phase of the ΠBBCS
O pro-

tocol has a linear time complexity in all its security parameters, as shown by Lemus et al.

[139]. The time complexity of ΠBBCS
FCOM

is O(κ(2l + t)), where κ is the security parameter

of the hash-based commitments, 2l is the number of qubits used to generate the oblivious

keys, and t is the number of testing qubits.

4.2.2 Classical OT

In section 4.1, we divided the well known Bellare-Micali protocol in these two phases and

we observed that it uses three exponentiations during the transfer phase. In Table 4.2,

we present the number of required modular exponentiations and communication rounds

during the transfer phase of four well known classical protocols that have their security

based on the computational hardness of the Discrete Logarithm problem.

Protocol Exponentiation Comm. rounds

EGL [93] 3 2

BM [2] 3 2

NP [13] 2 2

SimpleOT [94] 1 2

Table 4.2: Number of modular exponentiation operations and communication rounds
executed during the transfer phase of four classical protocols.

From Table 4.2, we see that the most efficient protocol (SimpleOT [94]) still requires

one exponentiation operation and 2 communication rounds. From the above formula (4.1)

and setting Cmcyles = 2.5×109, Cmexp = 400 000 and Nmexp = 1, we get an overestimation

of around 6000 OT per second. Comparing with the rate achieved by OT extension

protocols (10 million OT in 2.62 s), it is still very inefficient.

This means current classical OT protocols have a computational complexity limited by

O(n2.58) bit operations due to modular exponentiation. The ΠBBCS
O protocol only depends

on simple bit operations (XOR, truncation and comparison), meaning its computational

complexity is linear in the length of the messages O(n).

Despite their security guarantees, none of the classical OT protocols discussed are

secure against quantum computer attacks. To achieve this level of security, post-quantum

approaches must be adopted, which may result in higher computational demands [198].

56

For example, the use of Kyber key encapsulation based on the module learning with

errors (M-LWE) problem [199] in a LAN network results in a rate of only 41 OT per

second (24 ms per OT), as reported in [200]. This rate is even lower than the rate of

56 OT per second achieved by the Naor-Pinkas protocol [13] reported in [3]. The NTRU

post-quantum encryption system [201] was used in [202, 203] to develop a 1-out-of-n OT,

which was compared with the SimpleOT protocol [94]. Although the individual sides are

more efficient in NTRU OT, the overall protocol is still less efficient, with a rate of 728

OT per second (1.372 ms per OT) for the highest security level compared to 1375 OT per

second (0.727 ms per OT) using SimpleOT. It is important to note that these protocols

are still vulnerable to intercept now, decipher later attacks as they rely on computational

assumptions that are only believed to be secure against quantum computer attacks and

not proven.

4.2.3 OT extension

As we explained in section 4.1.3, several techniques based on an hybrid symmetric-

asymmetric approach were developed as a way to increase the OT execution rate. These

techniques use a small number κ (= 128) of base OT protocols (e.g. EGL, BM, NP,

SimpleOT) and extend this resource to m (= 10 000 000) OT executions, where m >> κ.

Again, to fairly compare ΠBBCS
O with OT extension protocols, we divide them into

precomputation and transfer phases. In this section, we compare the communication

and computational complexity of m executions of ΠBBCS
O to one execution of an OT

extension protocol, as the latter generates a predetermined number (m) of OTs. We

compare ΠBBCS
O with the semi-honest ALSZ13 protocol and then with the maliciously

secure KOS15 protocol.

ALSZ13 comparison

Let’s consider the OT extension protocol proposed in [3] (ALSZ13), as illustrated in

Figure 4.5. At the time of writing, this protocol reports the fastest implementation with

10 million OTs generated in just 2.68 seconds. The ALSZ13 protocol is divided into

two phases: an initial OT phase and an OT extension phase. For comparison purposes,

we will focus solely on the second phase, which aligns with our distinction between the

precomputation and transfer phases.

In Tables 4.3 and 4.4, we present a comparison of the computational and communica-

tion complexity of the OT extension protocol (ALSZ13) and ΠBBCS
O . In Table 4.3, PRG

refers to a pseudorandom generator, κ is the number of base OTs executed during the

precomputation phase of the OT extension, m represents the total number of OTs, and l

57

ALSZ13 OT extensions protocol [3]

Alice’s input: m pairs (x0
j , x

1
j), ∀j ∈ [m] of l-bit strings.

Bob’s input: m selection bits r = (r1, ..., rm).

Initial OT phase (Precomputation phase)

1. Alice randomly generates a string s = (s1, ..., sκ).

2. Bob randomly chooses κ pairs of κ-bit strings {(k0
i ,k

1
i)}κi=1.

3. Bob and Alice execute κ base OTs, where Alice plays the role of the receiver
with input k and Bob plays the role of the sender with messages (k0

i ,k
1
i), ∀i ∈

[κ].

OT extension phase (Transfer phase)

4. Bob applies a pseudorandom number generator G to k0
i , i.e. ti = G(k0

i).
Computes ui = ti ⊕G(k1

i)⊕ r and sends ui to Alice for every i ∈ [κ].

5. Alice computes qi = (si · ui)⊕G(ksii).

6. Alice sends (y0
j , y

1
j) for every j ∈ [m], where y0

j = x0
j ⊕ H(j, qj), y

1
j = x1

j ⊕
H(j, qj ⊕ s) and qj is the j-th row of the matrix Q = [q1|...|qκ]. Note that,
in practice, it is required to transpose Q to access its j-th row.

7. Bob computes x
rj
j = y

rj
j ⊕H(j, tj).

Alice’s output: ⊥.
Bob’s output: (xr11 , ..., x

rm
m).

Figure 4.5: Precomputation and transfer phases of OT extensions protocol presented in
[3].

is the length of the OT strings. It is assumed that l ∼ κ have a similar magnitude, as the

key length used in the garbled circuits is l = 128, 192, or 256, while κ = 128 [3]. Now, we

justify the analysis presented in Tables 4.3 and 4.4.

Regarding the ALSZ13 protocol, for every i ∈ [κ], Bob computes two PRGs in step

4 and Alice computes one PRG in step 5. This accounts for 3κ PRG executions. For

every j ∈ [m], Alice computes two hash functions in step 6 and Bob computes one hash

function. This accounts for 3m hash functions. For every i ∈ [κ], Bob computes two

m−bit XOR operations in step 4 and Alice computes one m−bit XOR operation. For

every j ∈ [m], Alice computes two l−bit XOR operations in step 6 and Bob computes

one l−bit XOR operation in step 7. Also, for every j ∈ [m], Alice computes one κ−bit

XOR operation in step 6. This accounts for 3mκ + 3ml + mκ bitwise XOR operations.

For every i ∈ [κ], Alice computes one m−bit AND operation in step 5. Finally, Alice

58

has to perform a matrix inversion which accounts for around m logm bit operations. The

communication complexity is given by the following elements: Bob sends an m−bit vector

for every i ∈ [κ] and Alice sends two l−bit messages for every j ∈ [m]. This accounts for

2ml +mκ bits sent.

Regarding the ΠBBCS
O protocol, for every execution of the protocol, Alice computes two

hash functions in step 6 and Bob computes one hash function in step 7. This accounts

for 3m hash functions. Also, Alice computes two l−bit XOR operations in step 6 and

Bob computes one l−bit XOR operation in step 7. This accounts for 3ml bitwise XOR

operations. For every execution of the protocol, Alice performs 2κ bitwise comparisons in

step 5. Also, Alice computes two κ−bit truncation in step 6 and Bob computes one κ−bit

truncation in step 7. The communication complexity is given by the following elements:

Bob sends a κ−bit vector and Alice sends two l−bit messages, for every execution of the

protocol. This accounts for 2ml +mκ bits sent.

Operation ALSZ13 ΠBBCS
O

PRG (AES) 3κ -

Hash (SHA-1) 3m 3m

Bitwise XOR 3mκ+ 3ml +mκ 3ml

Bitwise AND mκ -

Matrix transposition m logm -

Bitwise comparison - 2mκ

Bitwise truncation - 3mκ

Table 4.3: Computational complexity comparison between ALSZ13 [3] OT extension pro-
tocol and ΠBBCS

O protocol from section 4.2.1.

ALSZ13 ΠBBCS
O

Bits sent 2ml +mκ 2ml +mκ

Table 4.4: Communication complexity comparison between ALSZ13 [3] OT extension
protocol and ΠBBCS

O protocol from section 4.2.1.

The communication complexity is exactly the same in both protocols: ∼ 3ml. So, the

OT extension protocol does not have any advantage over ΠBBCS
O during the communica-

tion phase. Regarding their computational complexity, we have to compare the binary

operations executed by each protocol.

59

Firstly, we can see that ΠBBCS
O transfer phase is asymptotically more efficient than

ALSZ13 OT extension transfer phase. The computational complexity of OT extension is

not linear in the number of OT executions, O(m logm), whereas it is linear in the case of

ΠBBCS
O , O(m). Now, let us compare the binary operations between each protocol. Denote

by BALSZ13
op and BBBCS

op the number of binary operations executed by ALSZ13 and ΠBBCS
O ,

respectively. As both protocols execute 3m hash functions, we do not take into account

their execution. Also, assuming that κ ∼ l, BALSZ13
op is roughly given by,

BALSZ13
op = 3κ+ 3mκ+ 3ml +mκ+mκ+m logm

= 8mκ+ 3κ+m logm

and BBBCS
op = 8mκ. Here, we simplify and assume that 3κ PRGs executions consume

only 3κ bit operations. Therefore, ALSZ13 has more BALSZ13
op −BBBCS

op ≥ m logm binary

operations than the transfer phase of ΠBBCS
O protocol.

From the results of our comparison, we can conclude that the transfer phase of ΠBBCS
O

is competitive with the corresponding phase of the semi-honest ALSZ13 protocol, and has

the potential to be even more efficient. Furthermore, the performance of ΠBBCS
O transfer

phase is achieved while providing stronger security guarantees. Unlike the ALSZ13 proto-

col, which relies on computational assumptions of the base OT, ΠBBCS
O has been proven

secure against quantum computers. Moreover, while ALSZ13 is a semi-honest proto-

col (assumes well-behaved parties that follow the protocol), ΠBBCS
O protocol is secure

against any corrupted party. To obtain a fair comparison, it is appropriate to consider

OT extension protocols that are secure against malicious parties. The work developed in

[194] presented the first protocol in the malicious scenario, which was latter optimised by

KOS15 [4] and ALSZ15 [197]. Both optimizations carry out one run of the semi-honest

OT extension presented in ALSZ13 plus some consistency checks. The protocol presented

in [4] adds to ALSZ13 a check correlation phase after the transfer phase and the protocol

presented in [197] adds a consistency check phase during the transfer phase. This means

that both malicious protocols’ transfer phases have greater computational and communi-

cation complexity when compared with ALSZ13. Therefore, we can infer that the transfer

phase of ΠBBCS
O has lower computational and communication complexity than its mali-

cious classical equivalents. In the next step, we compare the KOS15 protocol [4] with

ΠBBCS
O .

KOS15 comparison

KOS15 protocol is very similar to ALSZ13, but it includes an additional phase called

check correlation phase. This phase ensures that the receiver is well behaved and does

60

Operation KOS15 ΠBBCS
O

Hash (SHA-1) 3m 3m

Bitwise XOR 3mκ+ 3ml +mκ 3ml

Bitwise AND mκ -

Matrix transposition m logm -

Bitwise comparison - 2ml

Bitwise truncation - 3ml

κ-bit additon 3(m+ (κ+ w))κ -

κ-bit mult 2(m+ (κ+ w))κ1.58 -

Table 4.5: Computational complexity comparison between KOS15 [4] OT extension pro-
tocol and ΠBBCS

O protocol from section 4.2.1.

not cheat. In Figure 4.6, it is presented the KOS15 protocol that generates m l-bit string

OT out of κ base OT, with computational security given by κ and statistical security

given by w. Note that, in Figure 4.6, we join all the subprotocols presented in the original

paper:
∏κ,m′

COTe,
∏κ,m

ROT and
∏κ,m

DeROT. Also, they identify Zκ2 with the finite field Z2κ and

use “ · ” for multiplication in Z2κ . For example, the element tj in
∑m′

j=1 tj ·χj (Figure 4.6,

step 10) should be considered in Z2κ .

KOS15 ΠBBCS
O

Bits sent 2ml +mκ+ κ 2ml +mκ

Table 4.6: Communication complexity comparison between KOS15 [4] OT extension pro-
tocol and ΠBBCS

O protocol from section 4.2.1.

The KOS15 protocol, like ΠBBCS
O and ALSZ13, begins with a precomputation phase

that can be performed prior to the actual OT computation. However, the KOS15 paper [4]

originally carried out the computation of PRGs G during the OT extension phase. These

3κ computations of G can actually be done during the precomputation phase as they are

independent of the input elements. The main difference between KOS15 and ALSZ13 lies

in steps 9− 11, the check correlation phase. In this phase, both parties utilize a random

oracle functionality FRand(Fm′2κ) to obtain equal random values. Bob then performs twice

m′ κ-bit sums, m′ κ-bit multiplications and sends 2κ bits (x and t) to Alice, who in

turn performs m′ κ-bit sums and m′ κ-bit multiplications. For the purpose of simplicity,

we assume that each κ-bit sum takes κ bit operations, and multiplication takes κ1.585,

61

KOS15 OT extensions protocol [4]

Alice’s input: m pairs (x0
j , x

1
j), ∀j ∈ [m] of l-bit strings.

Bob’s input: m selection bits r = (r1, ..., rm).

Initial OT phase (Precomputation phase)

1. Alice randomly generates a string s = (s1, ..., sκ) and Bob randomly chooses
κ pairs of κ-bit strings {(k0

i ,k
1
i)}κi=1.

2. Bob and Alice execute κ base OTs. Alice plays the role of the receiver with
input s and Bob plays the role of the sender with messages (k0

i ,k
1
i), i ∈ [κ].

3. Bob applies a pseudorandom number generator G to k0
i and k1

i : t
i = G(k0

i)
and ti1 = G(k1

i). Also, set T i = ti ⊕ ti1.

4. Alice applies G to ksii and sets gsii = G(ksii).

OT extension phase (Transfer phase)
Extend

5. Bob generates random elements rj, for r ∈ [m + 1,m′] and resize r =
(r1, ..., rm, rm+1, ..., rm′), where m′ = m+ (κ+ w).

6. Bob computes ui = T i ⊕ r and sends ui to Alice for every i ∈ [κ].

7. Alice computes qi = (si × ui)⊕ gsii for every i ∈ [κ].

Check correlation

8. Sample (χ1, ..., χm′)← FRand(Fm′2κ).

9. Bob computes x =
∑m′

j=1 rj · χj and t =
∑m′

j=1 tj · χj, where tj is the j-th row

of the matrix [t1|...|tκ] and sends these to Alice.

10. Alice computes q =
∑m′

j=1 qj · χj, where qj is the j-th row of the matrix

Q = [q1|...|qκ], and checks that t = q+r ·s. If the check fails, output Abort,
otherwise continue.

Randomize and encrypt

11. Alice sends (y0
j , y

1
j) for every j ∈ [m], where y0

j = x0
j ⊕ H(j, qj), y

1
j = x1

j ⊕
H(j, qj ⊕ s).

12. Bob computes x
rj
j = y

rj
j ⊕H(j, tj).

Alice’s output: ⊥.
Bob’s output: (xr11 , ..., x

rm
m).

Figure 4.6: Precomputation and transfer phases of OT extensions protocol presented in
[4].

62

using the Karatsuba method for multiplication with O(κ1.585) complexity and schoolbook

addition with O(κ) complexity.

Let us compare the binary operations between KOS15 and ΠBBCS
O as we did with the

ALSZ13 protocol. Denote by BKOS15
op and BBBCS

op the number of binary operations executed

by KOS15 and ΠBBCS
O , respectively. Again, without taking into account the execution of

3m hash functions and assuming that κ ∼ l, BKOS15
op is roughly given by,

BKOS15
op = 3mκ+ 3ml +mκ

+mκ+m logm

+ 3(m+ (κ+ w))κ

+ 2(m+ (κ+ w))κ1.58

= 11mκ+m logm

+ 3κ2 + 3wκ

+ 2mκ1.58 + 2κ2.58 + 2wκ1.58

and BBBCS
op = 8mκ. Therefore, KOS15 has more BKOS15

op − BBBCS
op ≥ 5mκ + m logm

binary operations than ΠBBCS
O transfer phase. For this estimation, note that we are

considering the lower bound 2mκ instead of 2mκ1.58 and we are not taking into account

the implementation of the random oracle FRand(Fm′2κ), which would add an extra cost linear

in the number of OT executions.

Regarding the communication complexity, the number of bits sent during both KOS15

and ΠBBCS
O is almost the same. KOS15 only adds κ bits to the communication during

the check correlation phase. However, since this overhead is independent of m (number

of OTs executed) its effect is amortized for big m.

4.3 Conclusion

The security and efficiency of OT implementations is crucial for secure computations.

While classical OT protocols rely on asymmetric cryptographic primitives, which are

known to be vulnerable to quantum attacks or have security based on conjectures, several

works [38, 39, 42, 139] have used the laws of physics to prove the security of BBCS-

based QOT protocols against malicious adversaries with access to quantum computers.

Additionally, using oblivious keys can separate the quantum technological burden from

the execution of OT and enable efficient implementation.

In this chapter, we compared the transfer phase of an optimized version (ΠBBCS
O) of

the BBCS-based QOT protocol with the transfer phase of the currently fastest imple-

mentation of OT (ALSZ13). Our results showed that the transfer phase of ΠBBCS
O has

63

the potential to be faster than the ALSZ13 protocol while offering higher security. In

addition to being secure against quantum computer attacks, BBCS-based QOT protocols

are also secure in the malicious setting, whereas ALSZ13 is only secure in the semi-honest

model. Furthermore, our analysis revealed that the transfer phases of current maliciously

secure implementations (ALSZ15 and KOS15) have a higher computation and communi-

cation complexity than ΠBBCS
O . In the next chapter, we compare the performance of a

secure multiparty computation system based on both classical OT and BBCS-based QOT

protocols.

64

Chapter 5

Private phylogenetic trees

Several privacy-enhancing technologies (PETs), such as differential privacy [21], homo-

morphic encryption [22], and secure multiparty computation, have been applied in the field

of biomedical data analysis, including genomic data analysis [204–208]. To advance the

state of the art, there have been competitions [209] aimed at developing faster and more

secure solutions in genomic analysis. Recent surveys [210, 211] have discussed the role

of PETs in various computational domains within the genomic field, including genomic

aggregation, GWASs and statistical analysis, sequence comparison, and genetic testing.

However, these surveys do not cover the application of privacy-preserving methods to

phylogeny inference.

In contrast to classical technologies, the use of quantum cryptographic technologies

in private computation has been limited. Only a few works have explored their integra-

tion, such as Chan et al.’s development of quantum-assisted real-world private database

queries [212] and the suggestion by Ito et al. [213] that quantum OT is suitable for

secure multiparty computation. However, quantum cryptographic technologies have ma-

tured to a level where their integration with privacy-enhancing technologies is possible.

Technologies such as quantum key distribution (QKD) and quantum random number gen-

erators (QRNG) are being commercialized for critical applications, such as governmental

data storage and communications, and have seen in-field deployment (e.g., OpenQKD,

https://openqkd.eu/). The quantum oblivious key distribution (QOKD) protocol, which

leverages the same technology as QKD and QRNG, benefits from its development and

provides the necessary resources to perform OT [130, 138, 139].

In this chapter, we present a feasible modular private phylogenetic tree protocol that

leverages quantum communications. It provides enhanced security against quantum com-

puter attacks and decreases the complexity of the computation phase when compared to

a state-of-the-art classical-only system. The system is built on top of Libscapi [214] im-

plementation of Yao protocol and PHYLIP phylogeny package [186]. It integrates three

65

crucial quantum primitives: quantum oblivious transfer, quantum key distribution and

quantum random number generator.

This chapter follows a top-down approach. In Section 5.1, we start by explaining the

concept of phylogenetic trees and the distance-based algorithms used to generate these

trees. In Section 5.2, we set down the security definitions that will be used to analyse and

prove the system’s security. In Section 5.3 and 5.4, we describe the quantum cryptographic

tools and the software tools that are integrated into the protocol, respectively. In Section

5.5, we describe the proposed SMC system for phylogenetic trees. In Section 5.6 we

explain how the quantum cryptographic tools are integrated into the system. Section

5.7 is devoted to the theoretical security analysis of the protocol and in Section 5.8 we

perform a complexity analysis. In the last Section we present a performance comparison

of the system between a classical-only and a quantum-assisted implementation.

5.1 Phylogenetic trees

Phylogenetic trees are diagrams that depict the evolutionary ties between groups of or-

ganisms [215] and are composed of several nodes and branches. The nodes represent

genome sequences and each branch connects two nodes. It is important to note that

the terminal nodes (also called leaves) represent known data sequences, whether internal

nodes are ancestral sequences inferred from the known sequences [216, 217]. The length

of the branches connecting two nodes represents the number of substitutions that have

occurred between them. However, this quantity must be estimated because it cannot be

computed directly using the sequences. In fact, by simply counting the number of sites

where two nodes have different base elements (Hamming distance), we underestimate the

number of substitutions that have occurred between them.

The best way to compute a correct phylogenetic tree depends on the type of species

and sequences under analysis and the assumptions made by the sequences substitution

model. By a correct tree, we mean a tree that depicts as approximate as possible the

real phylogeny of the sequences, i.e. the real ties between known sequences and inferred

ancestors. These assumptions lead to different algorithms which can be divided into two

categories:

1. Distance-based methods: they base their analysis on the evolutionary distance ma-

trix which contains the evolutionary distances between every pair of sequences.

The evolutionary distance used also depends on the substitution model considered.

These methods are computationally less expensive when compared to character-

based methods;

66

2. Character-based methods: they base their analysis on comparing every site (char-

acter) of the known data sequences and do not reduce the comparison of sequences

to a single value (evolutionary distance).

We only consider the distance-based algorithms that are part of the PHYLIP [218] dis-

tance matrix models, namely: Fitch-Margoliash (fitch and kitsch), Neighbour Joining

(neighbor) and UPGMA (neighbor). Also, we only consider the evolutionary distances

developed in PHYLIP dnadist program: Jukes-Cantor (JC) [219], Kimura 2-parameter

(K2P) [220], F84 [221] and LogDet [222]. For readers interested in learning more about

phylogenetic analysis, we recommend the textbooks by Ziheng [216] and Felsenstein [217].

Next, we give an overview of these distance-based methods to build some intuition on

how to tailor them to a private setting. We start by looking at the different evolutionary

distances and then at the distance-based algorithms.

5.1.1 Evolutionary distances

The evolutionary distance depends on the number of estimated substitutions between two

sequences, which is governed by the substitution model used. So, before defining a suitable

distance, it is important to have a model that describes the substitution probability of

each nucleotide across the sequence at a given time.

The distances considered in this work can be divided into two groups by their as-

sumptions. JC, K2P and F84 assume that the substitution probabilities remain constant

throughout the tree, (i.e. stationary probabilities), whether the LogDet distance assumes

that the probabilities are not stationary.

Also, the first three evolutionary distances (JC, K2P and F84) assume an evolutionary

model that can be described by a time-homogeneous stationary Markov process. This

Markov process is based on a probability matrix P(t) that defines the transition proba-

bilities from one state to the other after a certain time period t. It can be shown [223]

that this probability is given by

P(t) = eQt (5.1)

where the rate matrix Q is of the form given by (5.2).

67

Q =

−µ(aπC + bπG + cπT) aµπC bµπG cµπT

gµπA −µ(gπA + dπG + cπT) dµπG eµπT

hµπA iµπC −µ(hπA + jπC + fπT) fµπT

jµπA kµπC lµπG −µ(iπA + kπC + lπG)

(5.2)

In Q, each entry Qij represents the substitution rate from nucleotide i to j and both

its columns and rows follow the order A, C, G, T . µ is the total number of substitutions

per unit time and we can define the evolutionary distance, d, to be given by d = µt. The

parameters a, b, c, ..., l represent the relative rate of each nucleotide substitution to any

other. Finally, πA, πC , πG, πT describe the frequency of each nucleotide in the sequences.

From Expression (5.1), it is possible to define a likelihood function on the distance d and

use the maximum likelihood approach to get an estimation of the evolutionary distance.

The likelihood function defines the probability of observing two particular sequences, x

and y, given the distance d:

L(d) =
n∏
i=1

πxiPxi,yi

(d
µ

)
.

The parameters of Q are defined differently depending on the evolutionary model used

and the maximum likelihood solution leads to different evolutionary distances.

Jukes-Cantor

The Jukes-Cantor model [219] is the simplest possible model based on Q as given in (5.2).

It assumes the frequencies of the nucleotide to be the same, i.e. πA = πC = πG = πT = 1
4

and sets the relative rates a = b = ... = l = 1. This model renders an evolutionary

distance between two sequences x and y given by:

dxy = −3

4
ln

(
1− 4

3

hxy
n

)
(5.3)

where hxy is the uncorrected hamming distance and n the length of the sequences.

Kimura 2-parameter

This model [220] distinguishes between two different nucleotide mutations:

1. Type I (transition): A ↔ G, i.e. from purine to purine, or C ↔ T , i.e. from

pyrimidine to pyrimidine.

68

2. Type II (transversion): from purine to pyrimidine or vice versa.

These two different types of transformation lead to different probability distributions

denoted by P and Q, where P is the probability of homologous sites showing a type I

difference, while Q is that of these sites showing a type II difference. So, the Kimura [220]

metric between x and y is given by the following:

dxy = −1

2
ln

((
1− 2P −Q

)√
1− 2Q

)
(5.4)

where P = n1

n
, Q = n2

n
and n1 and n2 are respectively the number of sites for which two

sequences differ from each other with respect to type I (“transition” type) and type II

(“transversion” type) substitutions.

F84

This model [221] also distinguishes different nucleotide transitions but do not assume the

nucleotide frequencies to be the same. This leads to a more general distance which can

be estimated in closed form:

dxy = −2A ln

(
1− P

2A
− (A−B)Q

2AC

)
+ 2(A−B − C) ln

(
1− Q

2C

)
(5.5)

where A = πCπT
πY

+ πAπG
πR

, B = πCπT + πAπG and C = πRπY for πY = πC + πT and

πR = πA + πG, and P and Q are defined as in the Kimura 2-parameter model above.

Although more complex models can be considered with different combinations of pa-

rameters in Q, not all of them produce a distance function that can be estimated in closed

form.

LogDet

As mentioned before, the models based on matrix Q assume that the probability matrix

P(t) is stationary, i.e. remains constant throughout the tree. However, there are evo-

lutionary scenarios where this assumption does not give a correct description of reality.

The LogDet evolutionary distance [222] suits a wider set of models and considers the case

where P(t) is different at each branch in the tree. This is given by

dxy = −1

4
ln

(
detFxy√
det
∏

x

∏
y

)
(5.6)

where the divergence matrix Fxy is a 4 × 4 matrix such that the ij−th entry gives the

proportion of sites with nucleotide i in sequence x and j in sequence y. Also,
∏

x and

69

∏
y are diagonal matrices where its i−th component correspond to the proportion of i

nucleotide in the sequence x and y, respectively.

5.1.2 Distance-based algorithms

All distance-based methods make use of evolutionary distances to compare different ge-

nomic sequences. Although it may lead to less accurate phylogenetic trees, these methods

are highly popular among researchers who have to handle large number of sequences. All

methods assume the following:

1. The evolutionary distance computed between each pair is independent of all other

sequences;

2. The estimated distance between each pair of sequences is given by the sum of the

size of the branches that connect both of them.

These algorithms are thus divided into two phase:

1. Distance computation phase: all the pairwise evolutionary distances are computed

according to the selected model. This step is common to all distance-based methods;

2. Iterative clustering: aggregate the sequences in clusters iteratively. This step is

specific to each method.

Let us briefly describe three of the most common distance-based methods [216].

UPGMA

The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method produces

a rooted phylogenetic tree and assumes the data to be ultrametric, i.e. assumes that

dxy ≤ max(dxz, dyz)

for sequences x, y and z. These two assumptions imply that all the sequences are equidis-

tant to the inferred root sequence.

It starts by considering every sequence as a single-valued cluster. Then, it goes on

merging the clusters according to the smallest difference between them and recomputes

the distance matrix through a simple average of distances. In summary, we have the

following steps:

1. Merge clusters, Ci = {ci} and Cj = {cj} for sets ci and cj, with the smallest

distance present in the distance matrix, i.e. di,j ≤ dk,l ∀k, l. Create a new cluster

Ci/j = {{ci, cj}}. This new cluster represents a branch between clusters Ci and Cj;

70

2. Recompute the distance matrix according to the following formula:

di/j,l =
di,l + dj,l

2

for all other clusters l;

3. Eliminate clusters Ci and Cj from the distance matrix and add cluster Ci/j with the

distances computed as in the previous step;

4. Repeat steps 1− 3 until there is only one cluster left.

Neighbour-Joining

As we have seen, the UPGMA joins the clusters with the minimum distance between

them. Now, the Neighbour-Joining method considers not only how close two clusters are,

but it also considers how far these two clusters are from the others. Thus, the clusters to

be merged should minimize the following quantity:

q(Ci, Cj) = (r − 2)d(Ci, Cj)− u(Ci)− u(Cj)

where r is the number of clusters in the current iteration and u(Ci) =
∑

j d(Ci, Cj).

As opposed to the UPGMA algorithm, this method produces an unrooted tree and it

can be summarised in the following steps:

1. Consider every sequence as a single-valued cluster and connect it to a central point;

2. Compute a matrix Q where its entries are given by the quantity above, i.e. Qij =

q(Ci, Cj);

3. Identify clusters Ci and Cj with the smallest value in the matrix Q. Create a new

node Ci,j and join both clusters Ci and Cj to it;

4. Assign to the branch CiCi/j a distance given by:

1

2
d(Ci, Cj)−

1

2

(ui − uj)
r − 2

and to the branch CjCi/j a distance given by:

1

2
d(Ci, Cj)−

1

2

(uj − ui)
r − 2

;

71

5. Eliminate clusters Ci and Cj from the distance matrix and add cluster Ci/j with the

distances to the other clusters computed as follows:

d(Cl, Ci/j) =
1

2
(d(Cl, Ci) + d(Cl, Cj)− d(Ci, Cj))

for all other nodes Cl;

6. Repeat steps 2− 5 until there is only one cluster left.

Fitch-Margoliash

This method renders an unrooted tree and also assumes that the distances are additive.

It analyses iteratively three-leaf trees and computes the distance between three known

nodes and one created internal node. This is based on the following observation. Given

three clusters Ci, Cj and Cl, and one internal node a that is connected to all these three

clusters, the distances between the clusters are given by:

d(Ci, Cj) = d(Ci, a) + d(a, Cj)

d(Ci, Cl) = d(Ci, a) + d(a, Cl)

d(Cl, Cj) = d(Cl, a) + d(a, Cj),

from which we can easily see that

d(a, Ci) = 1
2

(
d(Ci, Cj) + d(Ci, Cl)− d(Cl, Cj)

)
d(a, Cj) = 1

2

(
d(Ci, Cj) + d(Cl, Cj)− d(Ci, Cl)

)
(5.7)

d(a, Cl) = 1
2

(
d(Ci, Cl) + d(Cl, Cj)− d(Ci, Cj)

)
.

Thus, we can estimate the distances from the known clusters to the new internal node

using the distances between the clusters as given in (5.7). Based on this, the Fitch-

Margoliash algorithm goes as follows:

1. Consider every sequence as a single-valued cluster;

2. Identify the two clusters, Ci and Cj, with the smallest distance in the distance

matrix;

72

3. Consider all the other clusters as a single cluster Cl and recompute the distance

matrix with just three clusters. The distances between the identified clusters and

the new cluster is given by an average value of the distances between the identified

clusters and the elements inside the cluster Cl, i.e.

d(Ci, Cl) =
1

|Cl|
∑
c∈Cl

d(Ci, c)

and similarly for Cj;

4. Using expressions (5.7), we compute the distances from the three clusters and the

central node;

5. Merge clusters, Ci and Cj, into a new one Ci/j and recompute the distance matrix

between Ci/j and all the other clusters c ∈ Cl by a simple average expression:

d(c, Ci/j) =
d(c, Ci) + d(c, Cj)

2
;

6. Repeat steps 2− 4 until there is only one cluster left.

All these methods output a tree with some topology, T along with the distances be-

tween the branches.

5.2 Security definition

In this chapter, we consider a multiparty computation scenario that is secure against

semi-honest parties. This means that all the parties strictly follow the protocol but can

use their inputs, received messages and outputs to deduce any additional information.

As such, these are also commonly called honest-but-curious parties. Nevertheless, we can

extend the protocol to the malicious setting, by simply implementing a two-party secure

computation protocol that is secure against malicious adversaries [75]. Our security will

follow the simulation paradigm and we start with the definition of security in a multi-party

setting. The formal definition is taken from [75] and it requires the following elements:

• F denotes the ideal functionality to be computed in the SMC session, i.e. F : X n →
Yn where n is the number of parties participating in the SMC and X and Y are the

input and output space of each party, respectively. X i ∈ X and Y i ∈ Y denote the

sets of input and output of party P i, respectively. Also, for short, X = (X1, ..., Xn)

and Y = (Y 1, ..., Y n);

73

• π denotes the protocol that implements the ideal functionality F ;

• C is the set of corrupted parties;

• viewiπ(X) := (X i, ri;mi
1, ...,m

i
t). This tuple is called the view of party P i and it

contains its inputs (X i), its random-tape value (ri) and the messages mi
j received

during the SMC execution;

• outputπ(X) = (output1
π(X), ..., outputnπ(X)), where outputiπ(X) is the output of

party i computed from its view viewiπ(X);

• S is a probabilistic polynomial-time simulator in the ideal-world;

• The distribution on inputs X given by a real-world execution of the protocol π:

Realπ(C;X) :=
{
{viewiπ(X) : i ∈ C}, outputπ(X)

}
X
.

• The distribution on inputs X given by the ideal-world simulation of the parties’

view:

IdealS,F(C;X) :=
{
S
(
{(X i,F(X i)) : i ∈ C}

)
,F(X)

}
X
.

Definition 8 (Semi-honest security). A protocol securely realizes F in the presence of

semi-honest adversaries if there exists a simulator S such that, for every subset of cor-

rupted parties C and all inputs X, we have

Realπ(C;X)
c≡ IdealS,F(C;X), (5.8)

where
c≡ denotes computational indistinguishability.

This definition conveys the notion that whatever can be computed by a party during

the execution of the protocol is only based on his inputs and outputs, i.e. the execution of

the protocol do not provide any further information. This is equivalent to expression (5.8),

which states that the distribution of the view and outputs in a real-world execution is

computationally indistinguishable from the distribution generated by a simulator and the

functionality output. It is also worth noting that, as it is proved in [224], for deterministic

F we have that definition III.1 is equivalent to the simpler case where the Real and Ideal

distributions do not take into account the output of the real protocol execution and the

output of the functionality, respectively, i.e.

Realπ(C;X) = {viewiπ(X) : i ∈ C}X

74

and

IdealS,F(C;X) =
{
S
(
{(X i,F(X i)) : i ∈ C}

)}
X
.

Therefore, we just need to build a simulator that satisfies expression (5.8) for the Realπ(C;X)

and IdealS,F(C;X) given as above in order to prove security.

5.2.1 Distance matrix functionality

For our private phylogenetic tree problem, the ideal functionality F outputs the distance

matrix according to the selected evolution model (Jukes-Cantor, Kimura 2-parameter,

F84 or LogDet). We denote by DMd, d ∈ {JC,K2P,F84,LD} such a functionality. Note

that this functionality is deterministic and, as we pointed before, we just have to prove

expression (5.8) to hold for the simpler definition of Real and Ideal.

The protocol that privately computes the distance matrix DMd is built up by many invo-

cations of a two-party distance functionality, denoted by Dd for d ∈ {JC,K2P,F84,LD}.
Consequently, we can reduce the the security of DMd to that of Dd and use the composition

theorem proved in [225] to prove DMd security.

Before presenting the composition theorem, we provide some informal definitions. We

have that an oracle-aided protocol using the oracle-functionality f is a protocol where the

parties can interact with an oracle which outputs to each party according to f . Also, when

an oracle-aided protocol privately computes some g in the sense of (5.8) using the oracle-

functionality f , we say that it privately reduces g to f . For a more detailed discussion

on this topic, we refer the interested reader to [225]. The composition theorem for the

semi-honest model can therefore be stated as follows:

Theorem 2. (Composition theorem) Suppose that g is privately reducible to f and that

there exists a protocol for privately computing f . Then, there exists a protocol for privately

computing g.

In other words, there exists a private protocol of g when the oracle-functionality f is

substituted by its real private protocol in the corresponding oracle-aided protocol g.

5.3 Quantum tools

In this section, we present three quantum primitives used in the private computation of

phylogenetic trees, rendering a full quantum-proof solution.

75

5.3.1 Quantum oblivious key distribution

We explored the concept of oblivious keys in chapter 3. To generate these oblivious keys,

we saw that we can follow the prepare-and-measure quantum approach developed by

Bennet [6] along with some commitment functionality. As an example, Lemus et al. [139]

proposed to use the Halevi and Micali classical bit commitments based on universal and

cryptographic hashing [226]. Thus, its security is based on the laws of physics and on the

fact that there is no significant quantum speed-up in finding collisions on the hash-based

bit commitments [139, 227, 228]. Also, as discussed in [51, 139], this protocol has an

important security feature: it is resistant against intercept now, decipher later attacks.

It this chapter, we call quantum oblivious key distribution (QOKD) the subprotocol of

BBCS-based QOT protocols that comprises all the phases excluding the transfer phase.

For illustration, the QOKD protocol in the bounded-quantum-storage model, ΠQOKD
bqs , is

summarised in Figure 5.1.

5.3.2 Quantum random number generator

A random number generator (RNG) is another very important tool in the realm of secure

multiparty computation. The SMC security can be compromised and the parties’ privacy

can be broken if the RNG used is predictable. An attack of this kind was reported in

[3] where the authors exploited the Java weak random number generator used in v0.1.1

FastGC [229]. This attack allowed them to disclose the inputs of both parties in an SMC

scenario. It also highlights the fact that it is not possible to use any kind of RNG for

cryptographic purposes.

In the case of cryptographically secure pseudorandom number generators (CSRNG),

it is crucial that it provides both forward and backward security. The former means

that an attacker should not be able to predict the next generated number even when

he knows all the generated sequence. The latter means that an attacker should not

be able to predict all the generated sequence from a small set of generated elements.

These two properties are not present in common RNGs. For example, linear congruential

generators do not fit for cryptographic tasks since they can be easily predicted as reported

in [230]. Also, Krawczk found that a large class of general congruential generators do not

provide forward security even for obscured parameters [231]. So, in order to produce some

CSRNG, instead of using linear operations, the research community decided to rely on the

computational intractability of computing the discrete logarithm. Both [232] and [233] use

modular exponentiation as an intermediate step in order to generate some pseudorandom

bit. As mentioned above, all the cryptographic protocols with their security based on

the discrete logarithm problem are threatened by quantum computers and these CSRNG

76

ΠQOKD
bqs protocol

Parameters: n, security parameter.
Alice’s input: (m0,m1) ∈ {0, 1}l (two messages).
Bob’s input: b ∈ {0, 1} (bit choice).

BB84 phase:

1. Alice generates random bits xA ←$ {0, 1}n and random bases θA ←$ {+,×}n.
Sends the state

∣∣xA
〉
θA

to Bob.

2. Bob randomly chooses bases θB ←$ {+,×}n to measure the received qubits.
We denote by xB his output bits.

Waiting time phase:

3. Both parties wait time ∆t.

Oblivious key phase:

4. Alice reveals to Bob the bases θA used during the BB84 phase and sets his
oblivious key to okA := xA.

5. Bob computes eB = θB ⊕ θA and sets okB := xB.

Alice’s output: okA.
Bob’s output: (okB, eB).

Figure 5.1: QOKD protocol in the bounded-quantum-storage model.

protocols are not an exception. Besides this technique, one could use either AES or DES

as cryptographically random generator.

Although these techniques are used to provide unpredictability and backward secrecy,

all the randomness relies on some initial seed. This seed is used because all the process

is based on deterministic algorithms. So, a pseudo RNG can be viewed as a randomness

extractor from some initial random value. For this reason, it is crucial to use an initial

random value that is as close as possible to a truly random value. This can be generated

from different sources and usually, the best randomness comes from physical devices (e.g.

atomic decay [234] or thermal noise [235]). So, a potentially good source of true RNG

comes from natural phenomena where some part of the system is used as the source of

entropy. In the case of classical natural phenomena, the entropy is frequently taken from

some unknown or chaotic subsystem which can ultimately be described by a deterministic

77

theory. In this case, the unpredictability drawn from the system’s entropy comes from our

lack of knowledge and inability to fully grasp the underlying complex natural mechanisms.

Also, some classical phenomena (e.g. mouse pointers) may not have enough entropy to

generate good quality random numbers. However, quantum natural phenomena have their

roots in quantum mechanics which is intrinsically related to probability theory. For this

reason, quantum systems can be potential sources of entropy even assuming complete

knowledge of the system. This comes from the fact that, in quantum mechanics, we only

have access to the probability distribution of the system’s state and we can only know it

after measuring it [236].

Within the scope of SMC, the generation of the circuit’s wire keys must be guaranteed

to be unpredictable and efficient. All these features can be achieved with a quantum RNG

(QRNG) [237].

5.3.3 Quantum key distribution

As we will explain in the last section, part of the communication between the parties

should be kept encrypted. Message encryption is commonly achieved with symmetric

cryptographic tools, such as AES (Advanced Encryption Scheme) or the perfect cypher

one-time pad. These symmetric tools are used to encrypt the communication content

through a common key assumed to be only known by both communicating parties. How-

ever, the techniques used to distribute a common key cannot be realized using just sym-

metric cryptography and one needs asymmetric cryptography. Unfortunately, most of the

commonly used techniques in asymmetric cryptography (RSA, Elliptic Curves or Diffie-

Hellman) rely on computational assumptions that can be broken by a quantum computer

through the already mentioned Shor’s algorithm [29].

So, to render a quantum-resistant privacy-preserving solution, we make use of quantum

key distribution (QKD) protocol to share symmetric keys to be used along with symmetric

cryptography [166, 238–240]. Its security relies on the laws of quantum physics and it

is proven to be resistant against computationally unbounded adversaries [80, 241]. This

level of security comes from one very important quantum property known as the No-

Cloning theorem. This property ensures that it is not possible to measure a quantum

state without introducing a measurable perturbation in the system. Thus, both parties

enrolling in the QKD protocol will be able to detect a potential eavesdropper in case some

adversary tries to intercept and read the quantum signals.

78

5.4 Software tools

Next, we present the open-source tools used to implement the system presented in the

subsequent sections.

5.4.1 CBMC-GC

The CBMC-GC compiler [242] is used in step 1) of Yao protocol to generate the boolean

circuit representation of the desired function. It translates C-like code into boolean circuits

based on a model checking tool called CBMC and it optimizes circuits for size and depth

[243, 244]. HyCC [12] is also a potential candidate for this step as it builds upon CBMC-

GC. However, it aims to build circuits for hybrid SMC protocols in which our system is

not based.

5.4.2 Libscapi

The Libscapi library [214] implements several important cryptographic primitives for two-

party and multi-party protocols. It is extensively used to implement steps 2−5 of the Yao

protocol in the repository MPC-Benchmark [245]. This implementation has integrated

one of the most efficient OT extension protocols [246] along with the base OTs proposed

by Chou and Orlandi [247].

5.4.3 PHYLIP

The PHYLIP package [218] is a C++ open-source project that provides a set of programs

to infer phylogenies. Among other programs, it implements distance-based methods (UP-

GMA, Neighbour-Joining, Fitch-Margoliash) and computes the evolutionary distances

described previously in Section 5.1.1 (JK, K2P, F84, LD). Due to its modularity, we in-

tegrate PHYLIP distance methods with Yao protocol for evolutionary distances assisted

with quantum technologies.

5.5 Secure multiparty computation of phylogenetic

trees

The proposed system allows to securely compute a suite of algorithms that perform phy-

logeny analysis through the computation of phylogenetic trees. Based on the modular

nature of distance-based algorithms, the system combines different evolution models with

79

different phylogenetic algorithms. In this section, we describe how to integrate the tools

presented in previews sections 5.3-5.4 to develop this modular private system.

5.5.1 Functionality definition

As already mentioned in Section 5.1, all distance-based methods are divided into two

phases: distance matrix computation and distance matrix processing. Apart from the

metric used, the first phase is similar among all methods whereas the second phase is

specific to each one while depending only on the distance matrix. Therefore, each phase

corresponds to a particular functionality that can be formalized as follows:

• Functionality DM: receives some distance metric d ∈ {JC,K2P,F84,LD} and all

input sequences, and outputs a matrix with the pairwise distances between every

sequence, i.e.

DM(d; s1, ..., sm) =

0 d1,2 · · · d1,m

d2,1 0 d2,m

...
...

. . .
...

dm,1 dm,2 · · · 0

where di,j = d(si, sj) for short.

• Functionality A: receives a distance matrix M and an algorithm type

a ∈ {UPGMA,NJ,FM},

and outputs the structure of the tree in newick tree format, i.e.

A(M,a) = (subtree1 : l1, subtree2 : l2),

where each l1 and l2 denotes the distance to its parent node, subtree is built up

by other subtrees and the leaves are given by (subtreek−1 : lk−1, sik : lk). For

consistency, leaves are also considered as a subtrees. Note that this representation is

not unique, e.g. (s1 : 0.7, (s2 : 0.3, s3 : 0.5) : 0.5) and ((s3 : 0.5, s2 : 0.3) : 0.5, s1 : 0.7)

represent the same rooted tree depicted in Figure 5.2.

Therefore, if we consider the equivalence relation, ∼, given by

(subtree1 : l1, subtree2 : l2) ∼ (subtree2 : l2, subtree1 : l1),

80

Figure 5.2: Example of rooted phylogenetic tree.

we have that the quotient set of the trees by ∼ satisfy the uniqueness property from

an evolutionary point of view.

For simplicity, denote by Aad the private protocol that implements sequentially both

functionalities described above, i.e. Aad(s1, ..., sm) = A(DM(d; s1, ..., sm), a). This leads

to twelve possible combinations of algorithms Aad for d ∈ {JC,K2P,F84,LD} and a ∈
{UPGMA,NJ,FM}.

5.5.2 Private protocol

During the distance matrix computation phase (DM) of the private Aad, each party has to

compute the distance between his sequences and the other parties’ sequences privately,

i.e. without revealing his sequences to the other parties. Since this corresponds to several

instances of a two-party secure computation, we make use of the Yao protocol described

in Section 2.2.1. This means that each party has to generate the boolean circuit represen-

tation of the elected distance d, which is accomplished by the CBMC-GC software tool

before the beginning of the protocol. In Section 5.7.1, we analyse how to generate these

circuits.

Now, since the Yao protocol is executed only between two different parties P i and P j

for i, j ∈ [n], the other participating parties P t, t ∈ [n] \ {i, j}, do not have access to the

distances computed between theses two parties. For this reason, P t has to receive the

result of the Yao protocol execution from both P j and P i. After this, each party outputs

the distance matrix that is used as the input of PHYLIP programs: fitch, kitsch or

neighbor.

In the second phase of the protocol (A), the parties do not need to communicate because

this phase only depends on the quantities computed during the first phase. For this reason,

this phase is executed internally by each party, who then compute the phylogenetic tree.

This phase is carried out by the PHYLIP programs mentioned in the previous paragraph.

81

Figure 5.3: Overview of the Aad network structure.

These two phases are shown in Figure 5.3 and we give more details about the protocol

assisted with quantum technologies in the next section.

5.5.3 Quantum private protocol

Let us specify the private Aad protocol with the quantum cryptographic tools. Following

the scenario depicted in Figure 5.3, we define Si = {si,1, ..., si,l} to be the set of sequences

owned by party P i. Also, we denote by d(i,l),(j,k) the distance between the l-th sequence

of party P i and the k-th sequence of party P j, i.e. d(i,l),(j,k) = d(si,l, sj,k).

As briefly described before, the private Aad protocol has two phases. The first phase

requires different types of interactions between the parties to compute the desired distance

matrix and the second phase is computed internally. Since the second phase is carried

out internally, there is no need for communication between the parties. Therefore, the

quantum cryptographic tools will only be used during the first private phase. In summary,

each pair of parties require two quantum channels as depicted in Figure 5.3: one to

generate oblivious keys for oblivious transfer and the other to generate symmetric keys

for encryption.

Consider the case where Pt has to compute the distance matrix entry corresponding to

distance d(i,l),(j,k). Depending on whether Pt owns both sequences, one of the sequences

or none of the sequences (s(i,l), s(j,k)), Pt proceed as follows:

1. If i = j = t (i.e. both sequences are owned by Pt), d(i,l),(j,k) is computed internally

82

by Pt (blue arrow in Figure 5.3);

2. If i = t and j 6= t (i.e. one of the sequences is owned by Pt), d(i,l),(j,k) is computed

privately with Yao protocol assisted with QOKD system (red arrow in Figure 5.3);

3. If i 6= t and j 6= t (i.e. none of the sequences is owned by Pt), both parties Pi and

Pj (or just party Pi in case i = j) must send to Pt the distance d(i,j),(k,l) encrypted

with the symmetric key generated through the QKD system (black arrow in Figure

5.3).

5.6 Quantum technologies integration

Now, let us see the role of quantum technologies in this private system and its integration

with quantum networks.

5.6.1 Quantum oblivious transfer

Libscapi implementation of Yao protocol combines a very efficient base OT protocol with

one of the fastest OT extension protocols. It uses the base OT (SimpleOT) proposed

by Chou and Orlandi [94] integrated with the OT Extension (KOS15 [4]) presented in

chapter 4. In this setting, the ΠBBCS
O protocol can be implemented in two different

ways depending on the number of oblivious keys generated between the two parties: as

a base OT protocol integrated within OT extension protocol or as a stand-alone method

substituting all Libscapi OT implementation. If the number of oblivious keys generated

is scarce compared to the number of OT required, then one should integrate ΠBBCS
O in

the OT extension. Otherwise, one could directly use the ΠBBCS
O protocol. A scheme of

the integration of the quantum oblivious key distribution (QOKD) system is depicted in

Figure 5.4.

It is important to note that the base OTs executed during the pre-computation phase

of the OT extension have the parties’ roles reversed. This means that the OT extension

sender is the base OT receiver and vice-versa. This should be taken into consideration

in case the ΠBBCS
O is integrated within OT extension because ΠBBCS

O is not symmetric

in the sense that the apparatus used by the sender is different from that of the receiver.

However, since it is known that OT is symmetric, we can use the reduction proposed in

[248] without having to swap the quantum technological material.

83

Figure 5.4: Overview of the integration of the QOKD service and the CBMC-GC tool in
the Yao protocol.

5.6.2 Quantum random number generation

As previously described, the Yao protocol needs to generate random numbers for the keys

in the Wire encryption step. This is crucial for the security of the protocol because its

predictability allows deducing the parties’ input as reported in [3].

Libscapi implementation makes use of OpenSSL library function RAND bytes to ran-

domly generate a seed from which it computes new numbers. In this private system, we

substitute this function to a call of QRNG.

5.6.3 Quantum key distribution

The QKD system allows the parties to receive the distance elements of the sequences they

do not own, while preserving the security of the system. We use the keys generated by

the QKD system along with the perfect cipher: one-time pad.

84

5.6.4 Quantum network integration

Technological equipment

Both QKD and QOKD protocols rely on the same physical processes. They can both

be realized either with continuous or discrete variables [139, 166, 239, 249]. Also, the

technological equipment used by the receiver (Bob) and transmitter (Alice) is the same

in both quantum services (QKD and QOKD). As for the case of the prepare-and-measure

setting, the first quantum step is the same in both protocols: Alice randomly sends

quantum states in two different bases and Bob measures these states on random bases.

The difference relies on the classical post-processing phase. So, we can conclude that

both services share the same technological equipment (fibre, receiver and transmitter).

Moreover, as proposed by Pinto et al. [250] in a similar setting, both QKD and QOKD

services can coexist with classical signals in the same fibre.

Network topology

The quantum private protocol explained above in Section 5.5.3 assumes that every two

parties have a direct quantum channel between them that is used to generate oblivious keys

and symmetric keys, i.e. a fully connected quantum network. This approach follows from

the fact that the first QKD and quantum OT (QOT) protocols were based on prepare-

and-measure techniques [5, 6]. However, as discussed in chapter 3, there are also protocols

that implement device-independent QOT (DI-QOT) [173, 181] (under some constraints)

and DI-QKD [166]. In addition to the advantages from a security point of view, these DI

protocols can also be implemented within a star-structured quantum network having an

untrusted party as the middle point. This increases the implementation flexibility of the

proposed quantum private protocol of phylogenetic trees (Section 5.5.3).

As analysed by Joshi et al. [251], existing networks fall into three possible types:

trusted node networks, actively switched and fully connected quantum networks based on

entanglement sharing and wavelength multiplexing. Using the two types of protocols just

mentioned (prepare-and-measure and device-independent), it is possible to implement our

proposed system in all three existing quantum network implementation types.

Moreover, Kumaresann et al. [252] analyses possible SMC infrastructure topologies

that can be created based on a set of OT channels shared between some pairs of parties

in the network. They developed “secure protocols that allow additional pairs of parties

to establish secure OT correlations using the help of other parties in the network in the

presence of a dishonest majority” (Abstract, [252]). Since they work in the information-

theoretical setting, there is no security loss in combining Kumaresann protocol with quan-

tum approaches. This integration increases the range of configurations allowed. However,

85

further efficiency analysis has to be done to understand the impact of this approach in

practice.

5.7 System security

In this section, we analyse the security of the proposed system. We start by describing

the methods used to privately compute the distance between two sequences and then we

prove the security of the private protocol proposed in Section 5.5.3 which implements the

functionality described in Section 5.5.1.

5.7.1 Private computation of distances

The private computation of the distance between sequences is an important building block

in the security of the system. We have that the privacy of the sequences directly relies on

this step. Here, we go through the methods used to compute the distances used by the

PHYLIP program: Jukes-Cantor, Kimura 2-parameter, F84 and LogDet.

A common building block to all these four distance metrics is the computation of the

Hamming distance between two sequences x and y, hxy. We start by looking at an adapted

divide-and-conquer way to compute the Hamming distance between two sequences and

then we see how to apply it to the private computation of distance metrics.

Hamming distance

We are interested in the boolean representation of the Hamming distance and, as men-

tioned above, we use the CBMC-GC tool to translate ANSI-C code into this representa-

tion. Usually, to compute the Hamming distance between two binary strings, x and y, we

start by applying the XOR operation, z = x⊕y. Then, we just have to count the number

of 1’s in z. This operation is commonly known as population count or popcount(z) for

short. So, the binary Hamming distance is given by hxy = popcount(x⊕ y).

We use an adapted divide-and-conquer technique for the computation of popcount(z)

[253]. Originally, this divide-and-conquer technique starts by dividing the sequence into

2-bit blocks and then counts the number of 1’s inside each 2-bit block. After that, it

allocates the result of each block in a new 2-bit block. Then, we can sum the values inside

these 2-bit blocks iteratively.

We follow the approach described above but we have to tailor it for the computation

of the Hamming distance between two four-based sequences (A,C,G, T). Since we are

using a boolean circuit representation, the nucleotide sequences must be represented in

binary. So, by convention, we use the following 2-bit encoding: A = 00, C = 01, G = 10

86

and T = 11. If we follow directly the approach described above, we would have that the

Hamming distance between the single-valued sequences “A” and “C” is smaller than the

single-valued sequence between “A” and “T”:

dH(A,C) = popcount(00⊕ 01)

= popcount(01) = 1,

dH(A, T) = popcount(00⊕ 11)

= popcount(11) = 2.

This issue comes from the fact that we are counting the number of 1’s inside every 2-bit

blocks. Instead, we are just interested in knowing if there is at least one element 1 inside

each 2-bit block because it indicates that the bases at that site are different. Therefore,

before counting the number of 1’s in the XORed sequence, we apply an OR operation to

the bits inside every 2-bit blocks. We call this operation popcountt(z). For simplicity,

hereafter we denote by hxy the tailored Hamming distance between sequences x and y.

Now, we have that the tailored Hamming distance between “A” and “T” gives the desired

result:

dH(A, T) = popcountt(00⊕ 11)

= popcountt(11)

= popcount
(
OR(1, 1)

)
= 1.

In Figure 5.5, we show an example on how to compute the Hamming distance between

two-valued sequences “AG” and “GC”.

Jukes-Cantor

As described in Section 5.1.1, the Jukes-Cantor distance between two sequences is given

by:

dxy = −3

4
ln
(

1− 4

3

hxy
N

)
,

where hxy is the hamming distance between sequence x and sequence y.

Now, note that the function f(x) = −3
4

ln
(

1 − 4
3
x
N

)
is one-to-one. This means that,

from a privacy point of view, f(x) carries the same amount of information than x. There-

fore, we could simply proceed as follows:

1. Privately compute the Hamming distance, hxy, using the tailored Hamming distance

method described above and the Yao protocol assisted with quantum oblivious keys;

87

Figure 5.5: Overview of the tailored divide-and-conquer technique. This corresponds to
lines 12-19 in Figure A.1 in Appendix A.

2. Internally compute dxy = f(hxy) (no need of quantum SMC).

This way, we just have to generate the boolean circuit for hxy rather than generating

for the full expression dxy.

Kimura

In Section 5.1.1, we saw that the Kimura 2-parameter model leads to the following dis-

tance:

dxy = −1

2
ln

((
1− 2P −Q

)√
1− 2Q

)
,

where P = n1

N
, Q = n2

N
and n1 and n2 are respectively the number of sites for which two

sequences differ from each other with respect to type I (“transition” type) and type II

(“transversion” type) substitutions.

Similar to the case of Jukes-Cantor metric, note that h(x) = −1
2

ln
(√

x
N3

)
is one-to-one

and only defined for x > 0. Thus, we can proceed as follows:

1. Privately compute the expression c = (N − 2n1 − n2)2(N − 2n2) using the tailored

Hamming distance method described above and the Yao protocol assisted with

quantum oblivious keys;

2. Internally computes dxy = h(c) (no need of quantum SMC).

More precisely, the ANSI-C code that privately computes expression c = (N − 2n1 −
n2)2(N − 2n2) proceeds as follows. It uses the function popcountt(z) described above to

compute the quantities n1 and n2. Observe that a transition type (A ↔ G or C ↔ T)

88

renders the same XOR value:

A⊕G = 00⊕ 10 = 10

T ⊕ C = 11⊕ 01 = 10.

Therefore, using a four-sized sequence, the quantities n1 and n2 are given by:

n1 = 4− popcountt(x⊕ y ⊕ 10101010)

n2 = popcountt(x⊕ y)− n1.

F84 and LogDet

Recall from Section 5.1.1, that the F84 (Fxy) and LogDet (Lxy) distances are given,

respectively, by:

Fxy = −2A ln

(
1− P

2A
− (A−B)Q

2AC

)
+ 2(A−B − C) ln

(
1− Q

2C

)
, (5.9)

Lxy = −1

4
ln

(
detFxy√
det
∏

x

∏
y

)
, (5.10)

where A = πCπT
πY

+ πAπG
πR

, B = πCπT + πAπG and C = πRπY for πY = πC + πT and

πR = πA +πG, and P and Q are defined as in the Kimura 2-parameter mode above. Also,

the divergence matrix Fxy is a 4×4 matrix such that the ij−th entry gives the proportion

of sites in sequence x and y with nucleotide i and j, respectively. Also,
∏

x and
∏

y are

diagonal matrices where its i−th component correspond to the proportion of i nucleotide

in the sequence x and y, respectively.

As before, we want to split the private computation of both Fxy and Lxy in two steps.

Note that, in this case, there is no clear way to define two bijective functions, g() and

q(), on some simple parameters, d and e, such that Fxy = g(d) and Lxy = p(e). By

simple parameters, we mean parameters that do not depend on complex operations such

as logarithm or square root. Instead, one can use the CORDIC algorithm [254, 255] for

square-roots and logarithm functions and translate an approximation of both Fxy and Lxy

into boolean circuits.

5.7.2 Private computation of phylogenetic trees

In this section, we prove that the protocol Aad described in Section 5.5.3 securely imple-

ments functionality A◦DM described in Section 5.5.1 according to the security definition 8.

So, we want to prove the following theorem:

89

Theorem 3. The protocol Aad securely realizes A ◦ DM in the presence of semi-honest

adversaries.

We start by noting that the ideal functionality outputs the distance matrix to the par-

ties and that during A computation there is no interaction between the parties. Therefore,

the security of the system is independent of the distance-based algorithm used (UPGMA,

Neighbour-Joining or Fitch-Margoliash) and we can only focus on the computation of DM

functionality.

As already mentioned, the protocol that implements the functionality DM is built

up by many invocations of a two-party distance functionality, denoted by Dd for d ∈
{JC,K2P,F84,LD}. So, in order to prove the above theorem, we will need to following

two lemmas:

Lemma 12. Aad privately reduces DM to Dd, i.e. an oracle-aided Aad protocol privately

computes DM using the oracle-functionality Dd.

Proof. In order to prove this lemma, we have to develop a simulator S that simulates the

view of a set of corrupted parties C. S starts from receiving all the input sequences from

the corrupted parties. It then proceeds as follows:

1. Generates random sequences of the honest parties, H.

2. Invokes the oracle-functionality Dd on these sequences.

3. Sends to all corrupted parties C the results of distances computed from honest

parties sequences.

4. Invokes the oracle-functionality Dd on the sequences owned by the corrupted parties.

5. Invokes the oracle-functionality Dd(si, sj) for si ∈ H and sj ∈ C.

In a real execution, the corrupted parties will only receive the distances computed by

Dd on the honest parties sequences (as in step 2.), on their sequences (as in step 4.) and

between corrupt and honest parties. Therefore, we have that the oracle-aided Aad protocol

privately computes DM using the oracle-functionality Dd.

Lemma 13. Yao protocol with the OT primitive instantiated by ΠBBCS
O protocol (Fig-

ure 4.3) privately computes Dd.

Proof. In [90] it was developed a framework that allows quantum protocols to be composed

in a classical environment. They also mention that a general secure function evaluation

90

remains secure when instantiating the OT primitive by a secure quantum version. In

[256], it was proved that ΠBBCS
O protocol is secure according to the security definition

given in [90]. Therefore, we can compose the ΠBBCS
O protocol with a Yao protocol [257]

while preserving the overall security.

So, from Lemma 12 and 13 we can use the composition theorem 2 and conclude that

the protocol Aad is secure.

We have proved that our system is well designed and secure against quantum computer

attacks under the semi-honest model. In order to extend the protocol to the malicious

setting, we just have to implement a two-party secure computation protocol that is secure

in the malicious adversary model [75].

5.8 Complexity analysis

In this section, we start by analysing the complexity of the protocol Aad presented be-

fore. We assume there are n parties, P1, . . . , Pn, with M1, . . . ,Mn sequences, respectively.

Also, we assume that the sequences are aligned and that they have the same number of

nucleotides, s.

5.8.1 Protocol complexity analysis

Now, let us analyse the complexity of the protocol presented in Section 5.5.3.

Yao protocol executions

Regarding the number of Yao protocol executions, we have that each party Pj owning

Mj sequences has to perform N j
Yao = Mj

∑
i 6=jMi secure distance computations. So, the

total number of Yao protocol executions is given by

NYao =
∑
j

N j
Yao =

∑
j,i6=j

MjMi.

If we assume the number of sequences per party to be the same, i.e. Mj = M ∀j ∈ [n],

then we can simplify the expression above and conclude that NYao = M2n(n − 1). This

means that the number of Yao protocol executions is quadratic in the number of sequences

per party (O(n2)) and also in the number of parties (O(M2)).

91

OT executions

From NYao we can deduce the number of OT executions. In the Yao protocol, we need

to execute one OT for each of the evaluator’s input wires. For a sequence with s nu-

cleotides and using a two-bit representation of each nucleotide, the boolean circuit that

computes the distance between two sequences will have 2s input wires for each party

input. Therefore, each party executes the following number of OT executions (∀j):

N j
OT = 2sN j

Yao

= 2sM2(n− 1).

It is important to note that N j
OT is independent of the size of the boolean circuit used,

i.e. it is independent of the distance metric d used in the protocol. This is a consequence

of using the Yao protocol where the number of OT only depends on the input size. In

case we were using GMW [24] protocol, the number of OT per party would depend on

the size of the circuit.

As mentioned in Section 5.6.1, in case the number of oblivious keys generated is scarce

compared to the number of OT required, we can use the ΠBBCS
O protocol to generate the

base OT used within OT extension protocol. In this case, we just have to generate κ

ΠBBCS
O protocols per Yao execution: LjbOT = κN j

Yao = κM2(n− 1).

Oblivious keys

At this point, we can easily deduce the size of oblivious keys that each pair of parties

have to generate when using messages of size l.

In case we use ΠBBCS
O protocol to generate the final OT:

Ljok = 2lN j
OT

= 4slM2(n− 1).

Also, we can use the number of OT executions per party and the analysis from Table 4.5

and [51] to compute the computational and communication complexity (in bits) of ΠBBCS
O :

Cjcomp = 8lN j
OT

= 16slM2(n− 1),

Cjcomm = 3lN j
OT

= 6slM2(n− 1).

92

In case we use ΠBBCS
O protocol to generate the base OT, the total size of oblivious key

required is:

Ljbok = 2lN j
bOT

= 2κlM2(n− 1).

QRNG

The QRNG has to generate twice the total length of oblivious keys, i.e. LQRNG = 2Lok.

Internal computation

Number of internal computations per party:

N j
int =

(
M

2

)
=

M !

2!(M − 2)!
.

Encryption keys

As discussed before, for every party P j, P t (t 6= j) has to receive from Pj the distances

known by Pj that Pt does not have access. So, Pj has to send M2(n− 2) +N j
int distance

values to Pt. Consequently, the length of the QKD key used to send these distances to Pt

is:

32(M2(n− 2) +N j
int),

for a 32−bit number representation. Therefore, the total size of key shared between two

parties Pj and Pt must be:

Ljtqkd = 64(M2(n− 2) +Nint).

Also, each party must have an overall shared key of:

Ljqkd =
∑
i 6=j

Liqkd = 64(n− 1)(M2(n− 2) +N j
int).

5.8.2 Use case

We now present the scenario used to test and compare both quantum-assisted and classical-

only approaches. We start by exploring the complexity analysis and the OT comparison

carried out in previous sections. We extend this analysis in the next section with a testbed

implementation.

We consider a scenario where three parties n = 3 have M SARS-CoV-2 genome se-

quences (with length s = 32 000) and want to privately compute a phylogenetic tree from

93

Parameter Formula Amount Generation Time

Ljok 4slM2(n− 1) 3.3× 109 bit 5m30s

Ljbok 2κlM2(n− 1) 6.6× 106 bit 0.64s

LjQRNG 8slM2(n− 1) 6.6× 109 bit 28s

Ljqkd 64(n− 1)(M2(n− 2) +
(
M
2

)
) 18.6× 103 bit 1.9× 10−3s

N j
Yao M2(n− 1) 200

N j
OT 2sM2(n− 1) 12.8× 106

N j
bOT κM2(n− 1) 25.6× 103

N j
int

(
M
2

)
45

Table 5.1: Complexity analysis where n = 3, M = 10, s = 32 000 and l, κ = 128. Ljok:
size of total oblivious key. Ljbok: total size of oblivious key for base OT. LjQRNG: random

bits generated by QRNG. Ljqkd: total size of QKD keys. N j
Yao: number of Yao protocol

executions. N j
OT: number of OT executions. N j

bOT: number of base OT executions. N j
int:

number of internal computations.

them. In the next section we consider a varying number of sequences, but, for now, we set

M = 10. Following a standard choice [3], we consider garbled circuit keys with l = 128

bits, computational security parameter with κ = 128 bits and statistical security param-

eter with w = 64 bits. For these parameter values, we can instantiate the expressions

deduced in the complexity analysis (Section 5.8.1). This information is summarised in

Table 5.1. As expected, the total size of oblivious keys (Ljok) required for a scenario where

ΠBBCS
O is the main OT protocol is three orders of magnitude higher than the case where

ΠBBCS
O serves as a base OT protocol in KOS15 (Ljbok). Also, we note that the total size

of symmetric keys required in the protocol (Ljqkd) is much smaller than that of oblivious

keys (Ljok and Ljbok), pointing to the fact that its management should be less expensive

than the oblivious keys management system. This will be discussed further in the next

section.

We can also estimate the time required to generate the keys based on their size. If

we consider state-of-the-art rates of 10 Mbit/s for both QKD and QOKD systems [258]

and a rate of 240 Mbit/s for QRNG (ID Quantique QRNG PCIe cards [259]), we would

need around 5 minutes for Ljok, 0.64s for Ljbok, 28s for LjQRNG and 1.9 × 10−3s for Ljqkd.

Note that we can significantly reduce the time of the precomputation phase in case we

integrate ΠBBCS
O with KOS15 OT extension protocol.

94

5.9 Performance evaluation

In this section, we set out to explore and compare the performance of two implemen-

tations of the proposed secure phylogenetic tree computation (Aad): classical-only and

quantum-assisted. The quantum-assisted system replaces Libscapi base OT (SimpleOT

[247]) implementation with the ΠBBCS
O protocol presented before (Figure 4.4). It also

uses symmetric keys along with one-time pad to encrypt distance values as described in

Section 5.5. More specifically, we benchmark our implementation for the duration of its

main components: circuit generation, communication, (internal) computation and SMC

operation.

Here, we do not assess the generation performance of both symmetric keys and oblivious

keys. We precompute these keys using a simulator that mimics the structure of the

quantum generated keys and we do not include their generation time in the performance

analysis. The reason for this is twofold: performance in quantum cryptography is an

active field of research with no clear way on how to be compared with classical approaches;

quantum generation of both keys (symmetric and oblivious) can be precomputed without

depending on the parties’ inputs and used later as a resource in the execution of the

system.

5.9.1 Setup

We leverage a testbed on a virtual environment composed of three Ubuntu (64-bit) 16.04.3

Virtual Machines (VM) with 3GB of RAM. The virtual environment was created using

VirtualBox and the VMs were running on a 2.6 GHz Intel Core i7 processor.

The performance of the implementation was measured on the VMs with the clock

type CLOCK REALTIME from the C++ library time. Although the values might differ for

different host machines, this method is certainly adequate to use as a comparison between

a classical-only and a quantum-assisted system.

We follow the scenario presented in Section 5.8.2, where we have three parties (n = 3)

owning at most ten sequences (M ≤ 10) with 32 000 nucleotides. For the sake of compar-

ison, we use the Jukes-Cantor phylogenetic distance along with PHYLIP implementation

of UPGMA algorithm, i.e. (d, a) = (JC,UPGMA).

Sequences preprocessing

The 30 sequences used in this testbed were taken from GISAID database [260] which

collects SARS-CoV-2 genome sequences. These sequences were then aligned using the

Clustal Omega API [261]. After alignment, the sequences (4-based) were translated to

bits according to the following rule: A → 00, C → 01, G → 10 and T → 11. Note

95

Min. Time Time Nº of gates Depth

0s 1m42.7s 2 489 218 29 771

100s 3m30.7s 2 205 372 21 711

200s 5m9.3s 2 205 372 21 711

Table 5.2: Generation of Jukes-Cantor boolean circuit. Min. Time: Minimization Time.

that this alignment procedure is not privacy-preserving and was only used for testing

purposes. A privacy-preserving alignment can be easily executed if all parties agree on a

public reference sequence and align locally their sequences against this reference.

5.9.2 Circuit generation

As mentioned above, the CBMC-GC tool can generate a boolean circuit description of the

phylogenetic distance from its corresponding ANSI-C code. In Table 5.2, we present the

generation time of the Jukes-Cantor boolean circuit for three different minimization time

values (CBMG-GC parameter). The minimization time is a parameter of the CBMC-GC

tool that regulates the time spent to minimize the size of the boolean circuit. We note

that the generation of the circuit only has to be carried out once. From Table 5.2, we can

see that the minimization time for values above 100s does not have a great impact on the

minimization of both the number of gates and circuit depth. The C code describing the

Jukes-Cantor distance is shown in Appendix A.

5.9.3 System execution time

We start by recalling that the proposed secure algorithm is divided into the following

parts:

1. Distance Matrix, DM:

(a) Pairwise SMC computation of distances, SMC;

(b) Pairwise internal computation of distances, IC;

(c) Sending/Receiving other sequences, Com;

2. Phylogenetic computation, A.

We join the internal computation of sequences and PHYLIP phylogenetic computation

into the same category and assess three different components for both classical and quan-

tum runs: Communication (Com), SMC (SMC) and Computation (IC, A). In Tables 5.3

96

Nº of Seq. 2 4 6 8 10

Comm. 3,95% 0,98% 0,44% 0,25% 0,16%

SMC 95,95% 98,94% 99,48% 99,68% 99,77%

Comp. 0,10% 0,08% 0,07% 0,07% 0,07%

Table 5.3: Percentage weight of each component in the classical-only system.

Nº of Seq. 2 4 6 8 10

Comm. 3,75% 0,93% 0,39% 0,22% 0,14%

SMC 96,15% 98,99% 99,55% 99,72% 99,81%

Comp. 0,10% 0,07% 0,06% 0,06% 0,05%

Table 5.4: Percentage weight of each component in the quantum-assisted system.

and 5.4, we show the proportion of each component. As expected, in both systems the

pairwise SMC computation of distances represents the greatest portion, accounting for

more than 95% of the time for all different numbers of sequences. However, the weight of

SMC in the quantum-assisted system is consistently higher than the classical-only system

for all cases. This can be explained by the fact that the quantum-assisted SMC takes

longer than the classical-only SMC.

Figure 5.6 present us with the average duration of both systems with standard deviation

as error bars. Here, we see that the quantum-assisted approach has a higher cost than the

classical-only implementation. As discussed in Section 5.6.1, we can either use the ΠBBCS
O

protocol as the main OT in the Libscapi implementation or we can use it as a base OT in

the KOS15 OT Extension used by Libscapi. Since we have implemented the latter, our

ΠBBCS
O is competing against the SimpleOT [247] base OT implementation. As analysed

by the authors (Section 4 [51]), the ΠBBCS
O transfer phase is expected to outperform base

OT implementations and to have comparable performance to OT Extension protocols.

However, these analyses only compared cryptographic and computational operations and

did not take into account implementation constraints and memory complexity.

In the quantum-assisted implementation, we separate the precomputation phase (gen-

eration of symmetric and oblivious keys) from the secure computation phase of the pro-

posed protocol, Aad. For this reason, it is necessary to develop a key management system

to save and keep key synchronization between parties. Consequently, the key management

system becomes the bottleneck as the number of sequences increases. In particular, the

key management system of oblivious keys is responsible for most of the overhead (Fig-

97

2 4 6 8 10
0

200

400

600

800

1,000

1,200

Nº of sequences per party

T
im

e
(s

)

Total running time

Quantum-assisted
Classical-only

Figure 5.6: Total running time of both quantum-assisted and classical-only systems.

ure 5.7). We refer to the difference between the quantum-assisted and the classical-only

system as the overhead of the quantum-assisted system.

The reason for oblivious keys management to be more expensive than symmetric man-

agement and to be the main cause of overhead is twofold: the total size of oblivious keys

used is three orders of magnitude higher than that of symmetric keys (compare Ljqkd and

Ljbok from Table 4.5); oblivious keys are saved in files (slower access) whereas symmetric

keys are loaded into RAM memory (faster access). The main reason for oblivious keys

to be managed from a file system is that it allows to use Libscapi implementation of Yao

protocol in a modular way, i.e. we only have to change the type of base OT used by

Libscapi implementation without tailoring any other module.

As the management of files is time-sensitive to their size, the proportion of time of

the system’s overhead due to the oblivious key management system (OKMS) increases

with the number of shared keys per party. This can be confirmed by Figure 5.8 which

shows the proportion of time spent by the oblivious key management system during the

overhead of the quantum-assisted system.

Future work is required to develop more efficient oblivious key management systems.

Despite this difference, we stress that the quantum-assisted system has a significantly

higher degree of security against quantum computer attacks.

98

Classic vs Quantum approach

Classical-only

2 4 4 6 6 8 8 10 10
0

200

400

600

800

1,000

1,200

1,400

Nº of sequences per party

T
im

e
(s

)

Classic vs Quantum approach

Quantum-assisted
OKMS

Figure 5.7: Total running time of the pairwise SMC computation of distances for both
quantum-assisted and classical-only systems.

2 4 6 8 10
0 %

20 %

40 %

60 %

80 %

100 %

Nº of sequences per party

OKMS overhead proportion

Figure 5.8: The proportion of the quantum-assisted system’s overhead that is attributable
to the Oblivious Key Management System (OKMS).

99

5.10 Conclusion

In this chapter, we presented an SMC protocol assisted with quantum technologies tailored

for distance-based algorithms of phylogenetic trees. It is a modular protocol that uses

one distance metric taken from four possible evolutionary models (Jukes-Cantor, Kimura

2-parameter, F84 and LogDet) and three different protocols (UPGMA, Neighbour-Joining

and Fitch-Margoliash). In total, we can implement twelve different combinations of pro-

tocols.

The proposed system is based on ready to use libraries (CBMC-GC, Libscapi and

PHYLIP) that are integrated with quantum technologies to provide a full quantum-proof

solution. We use the quantum version of primitives that play a central role in the security

of the system: oblivious transfer, encryption and random number generation.

We compare the performance of a classical-only and a quantum-assisted system based

on simulated symmetric and oblivious keys. Previous analyses on the computation and

communication complexity point to a scenario where the quantum-assisted version does

not add an extra efficiency cost. This is confirmed by comparing the running times of both

approaches without considering the overhead created by the oblivious key management

system that increases with the number of shared keys. Further work is required to develop

more efficient key management systems. Despite this extra cost, the quantum-assisted

version significantly improves the system security when compared with the classical-only

as it renders a protocol with enhanced security against quantum computers.

100

Chapter 6

Quantum oblivious linear evaluation

Oblivious Linear Evaluation (OLE) is a cryptographic task that permits two distrustful

parties, say Alice and Bob, to jointly compute the output of a linear function f(x) = ax+b

in some finite field, F. Alice provides inputs a, b ∈ F and Bob provides x ∈ F, while the

output, f(x), becomes available only to Bob. As the parties are distrustful, a secure OLE

protocol should not permit Alice to learn anything about Bob’s input, while also Alice’s

inputs should remain unknown to Bob. OLE can be seen as a generalization of oblivious

transfer (OT) [55], a basic primitive for secure two-party computation, which is a special

case of secure multi-party computation [10, 262, 263]. OT has been shown to be complete

for secure multi-party computation, i.e., any such task, including OLE, can be achieved

given an OT implementation.

Impagliazzo and Rudich proved that OT protocols require public-key cryptography

and cannot just rely on symmetric cryptography [40]. Consequently, OLE cannot rely

on symmetric cryptography either, and we need to resort to public-key cryptography.

However, Shor’s quantum algorithm [29] poses a threat to the currently deployed public-

key systems, motivating the search for protocols secure against quantum attacks. Bennet

et al. [6] and Crépeau [264] proposed the first protocols for quantum OT (QOT). As far

as quantum OLE (QOLE) is concerned, to the best of our knowledge, no protocol has

been proposed as of now. Analogously to the classical case, it is expected that one can

implement QOLE based on QOT protocols. That said, in this work we propose a protocol

for QOLE that, additionally, does not rely on any QOT implementation.

OLE is commonly generalised to vector OLE (VOLE). In this setting, Alice defines

a set of k linear functions (a, b) ∈ Fk × Fk and Bob receives the evaluation of all these

functions on a specified element x ∈ F, i.e. f := ax + b. One can think of VOLE as the

arithmetic analog of string OT and show how it can be used in certain Secure Arithmetic

Computation and Non-Interactive Zero Knowledge proofs [71]. Ghosh et. al put further

in evidence the usefulness of VOLE by showing that it serves as the building block of

101

Oblivious Polynomial Evaluation [67], a primitive which allows more sophisticated appli-

cations, such as password authentication, secure list intersection, anonymous complaint

boxes [265], anonymous initialization for secure metering of client visits in servers [266],

secure Taylor approximation of relevant functions (e.g. logarithm) [267], secure set inter-

section [268] and distributed generation of RSA keys [269]. We also show how our QOLE

protocol can be adapted to achieve secure VOLE.

6.1 Contributions overview

We present a quantum protocol for OLE with universally composable security (quantum-

UC security, see Definition 6) in the FCOM−hybrid model, i.e. when assuming the

existence of a commitment functionality, FCOM (see Figure 2.5). To obtain a secure

protocol, we take advantage of the properties of mutually unbiased bases (MUBs) in

high-dimensional Hilbert spaces with prime and prime-power dimension. Such a choice

is motivated by recent theoretical and experimental advances that pave the way for the

development and realization of new solutions for quantum cryptography [43–47, 270–275].

To the best of our knowledge, our protocol is the first proposal of a QOLE protocol proved

to be quantum-UC secure. Moreover, it is not based on any QOT implementation which

would be the standard approach. To prove its security, the only assumption we make is

the existence of a commitment functionality. We consider the static corruption adversarial

model with both semi-honest and dishonest adversaries. Finally, we modify the proposed

protocol to generate quantum-UC secure VOLE.

Main tool. The proposed protocol ΠQOLE (see Figure 6.5) is based on the fact that in a

Hilbert space of dimension d (isomorphic to Zd) there exists a set of MUBs {|exr 〉}x,r∈Zd ,
such that, upon the action of a certain operator V b

a , each basis element r is shifted by

some linear factor ax− b inside the same basis x:

V b
a |exr 〉 = ca,b,x,r

∣∣exax−b+r〉 , (6.1)

where a, b, x, r ∈ Zd = {0, 1, . . . , d−1}. If Alice controls the operator V b
a and Bob controls

the quantum state |exr 〉, they are able to compute a linear function f(x) = ax − b where

effectively Alice controls the function f = (a, b) and Bob controls its input x. Moreover,

since Bob controls x and r, he can receive f(x) by measuring the output element.

Protocol overview. In a nutshell, the QOLE protocol (see Figure 6.5) with inputs

f = (a, b) from Alice and x from Bob is divided into two main phases. In the first quantum

phase, Alice and Bob use high-dimensional quantum states to generate n random weak

102

OLE (RWOLE) instances, where n is the security parameter. In this phase, Alice outputs

n random elements f 0
i = (a0

i , b
0
i), and Bob outputs n elements (x0

i , y
0 = f 0

i (x0
i)). These

instances are considered to be weaker because Bob is allowed to have some amount of

information about the n outputs of Alice (a0
i , b

0
i). In the second post-processing phase,

Alice and Bob use classical tools to extract one secure OLE from the aforementioned n

instances.

More specifically, in the quantum phase, Bob randomly generatesm = (1+t)n quantum

states
∣∣∣ex0

i
ri

〉
and sends them to Alice. Then, Bob commits to his choice (x0

i , ri), ∀i ∈
[m], where for any l ∈ N, [l] denotes the set {1, . . . , l}, using an ideal commitment

functionality, FCOM, and Alice asks to verify a subset T of size tn of these commitments.

This intermediate commit-and-open step allows Alice to test Bob’s behaviour and ensure

that he does not deviate too much from the protocol, and it is a common method used

in security proofs of QOT protocols [37, 89]. If Bob passes all the tests, Alice randomly

generates (a0
i , b

0
i) and applies V

b0i
a0
i

to the remaining n received states
∣∣∣ex0

i
ri

〉
, for i ∈ [m]\T .

For the rest of this section we relabel and denote [n] = [m] \ T . According to the

expression (6.1), the output states are given by
∣∣∣ex0

i

a0
i x

0
i−b0i+ri

〉
and she sends them to Bob,

who outputs y0
i = a0

ix
0
i − b0

i by measuring the received states in the corresponding basis

x0
i and subtracting ri, ∀i ∈ [n].

The post-processing phase uses two subprotocols: a derandomization step (see Figure

6.3) and an extraction step (see Figure 6.4). The derandomization step is based on the

protocol Πn
OLE from [276] and transforms the n RWOLE instances into n weak OLE

(WOLE) instances with inputs (ai, bi)i∈[n] chosen by Alice and inputs xi for i ∈ [n] chosen

by Bob. The extraction protocol uses the so-called Multi-linear Modular Hashing family,

MMH∗, of two-universal hash functions [84] to render Bob’s information on Alice’s system

useless and to extract one secure OLE out of n instances of WOLE. In the extraction phase,

Alice samples a two-universal hash function gκ from MMH∗ and sends it to Bob. Then,

with adequately-crafted vectors (a, b) =
(
(a1, . . . , an), (b1, . . . , bn)

)
, Alice has a = gκ(a)

and b = gκ(b), and Bob outputs y = gκ(y), where y = ax + b after point-wise vector

multiplication with the constant vector x = (x, . . . , x).

quantum-UC security. Due to the quantum nature of the states
∣∣∣ex0

i
ri

〉
i∈[n]

, a dishonest

Alice is not able to distinguish which bases x0
i , i ∈ [n] are used by Bob. From her point of

view, Bob’s states are maximally mixed and therefore completely hide x0
i . This is enough

to ensure that, in the derandomization step, Alice does not receive any information about

Bob’s final input x. For a dishonest Bob, to correctly pass all Alice’s tests, it means

he did not cheat at all rounds with overwhelming probability. This ensures that he

has some bounded information on Alice’s random elements (a0
i , b

0
i)i∈[n], and using privacy

103

amplification techniques in the extraction step, Alice can guarantee that Bob’s information

about her final input (a, b) is the same as in the case of an ideal OLE functionality, i.e.

the probability distribution of a is close to uniform.

Turning this intuition into a quantum-UC security proof requires some additional in-

sights. First, we need a way to quantify Bob’s information on Alice’s elements (a0
i , b

0
i)

after the testing phase and the application of the corresponding V
b0i
a0
i

operators, for i ∈ [n];

for this purpose we use the quantum min-entropy (see Definition 3). We follow the ap-

proach of [37] to guarantee that Bob does not significantly deviate from the protocol in

all the rounds, and we use Theorem 1 from [81] to compute a concrete lower bound of

Bob’s min-entropy on Alice elements (a0
i , b

0
i)i∈[n]. Along with Lemma 11, we have that

a = gκ(a) is close to uniform, which is sufficient to prove that Bob does not know more

about (a, b) than what the output y = ax+ b reveals.

In order to show that the protocol ΠQOLE is quantum-UC secure, we need to show

that an ideal execution of ΠQOLE with access to FOLE (Figure 2.3) is indistinguishable

from a real execution of the protocol from the point of view of an external entity called

the environment. To prove this indistinguishability, we have to build a simulator that

simulates the execution of the protocol in the ideal setting and generates messages on

behalf of the honest simulated parties, while trying to extract the dishonest party’s inputs

and feed them in FOLE. In particular, for a dishonest Alice, we have to demonstrate

the existence of a simulator, SA, that generates messages on behalf of honest Bob and

extracts Alice’s input (a, b) which, in turn, feeds into FOLE. To this end, we consider that

SA simulates an attack by Bob at all rounds, i, of the protocol which allows to extract

the m values of Alice (a0
i , b

0
i). However, the commit-and-open scheme described above is

designed to catch such an attack, and to work around this issue we substitute the ideal

commitment functionality, FCOM, with a fake commitment functionality, FFakeCOM, that

allows SA to open the commitments later [89]. From the remaining n values (a0
i , b

0
i), SA

computes Alice’s input (a, b) and feeds it to FOLE.

For a dishonest Bob, we have to show the existence of a simulator, SB, that generates

messages on behalf of honest Alice and extracts Bob’s input x. We assume that SB has

full control over FCOM, which means that it has access to Bob’s m committed values

(x0
i , ri); the input x can be easily extracted from these values.

Protocol generalization. We start by generalizing the main relation (6.4) to Galois

Fields of prime-power dimension, GF (dM) for M > 1. Then, we show how we can obtain

a protocol for quantum VOLE. In particular, from n WOLE instances, we are able to

generate a VOLE with size proportional to n, and we bound this proportion by the min-

entropy value on the WOLE instances.

104

6.1.1 Organization

In Section 6.2, we introduce the main tool used in the QOLE protocol. In Section 6.3,

in order to build some intuition, we present a QOLE protocol that is secure only if we

consider Bob to be semi-honest; in case Bob is dishonest, its security is compromised.

In Section 6.4, we construct a secure protocol that comprises the first part of our main

QOLE protocol presented in Section 6.4.2. Next, in Section 6.5, we prove the security of

the QOLE protocol in the quantum-UC framework. Then, in Section 6.6, we show how

to generalise the presented QOLE protocol to Galois Fields of prime-power dimensions

and we also present a quantum-UC secure protocol achieving VOLE.

6.2 Mutually unbiased bases

In this section, we present the basics and some properties of mutually unbiased bases

(MUBs) in some high-dimensional Hilbert space Hd. This is the main tool that is used

in our protocol. For more details about MUBs see [44].

Definition 9. Let B0 = {|ψ1〉 , . . . , |ψd〉} and B1 = {|φ1〉 , . . . , |φd〉} be orthonormal

bases in the d-dimensional Hilbert space Hd. They are said to be mutually unbiased if

| 〈ψi|φj〉 | = 1√
d

for all i, j ∈ {1, . . . , d}. Furthermore, a set {B0, . . . ,Bm} of orthonormal

bases on Hd is said to be a set of MUBs if, for every i 6= j, Bi is mutually unbiased with

Bj.

MUBs are extensively used in quantum cryptography because, in some sense, these

bases are as far as possible from each other and the overlap between two elements from

different bases is constant. Let
{
|0〉 , . . . , |d− 1〉

}
be the computational basis of Hd,

where d is a prime number, and
{ ∣∣0̃〉 , . . . , ∣∣∣d̃− 1

〉}
be the dual basis which is given by

the Fourier transform on the computational basis:

∣∣j̃〉 =
1√
d

d−1∑
i=0

ω−ij |i〉 ,

where ω = e
2Πi
d . We can easily verify that the computational basis and its dual basis are

mutually unbiased, and we will make use of the following two operators, V 0
a and V b

0 , to

encode Alice’s functions during the first (quantum) phase of the protocol.

Definition 10 (Shift operators). The shift operator V 0
a shifts the computational basis by

a elements, i.e.

V 0
a |i〉 = |i+ a〉 .

Similarly, the dual shift operator V b
0 shifts the dual basis by b elements, i.e.

105

V b
0

∣∣j̃〉 =
∣∣∣j̃ − b〉 .

The operators V 0
a and V b

0 are diagonal in the dual and computational basis, respec-

tively1, i.e.

V 0
a =

d−1∑
j=0

ωaj
∣∣j̃〉〈j̃∣∣ and V b

0 =
d−1∑
i=0

ωbi |i〉〈i| .

Furthermore, following the convention from [44], we can define

V b
a := V b

0 V
0
a =

d−1∑
l=0

ω(l+a)b |l + a〉〈l| ,

obtaining the so-called Heisenberg-Weyl operators. These operators form a group of uni-

tary transformations with d2 elements; the group has d+ 1 commuting abelian subgroups

of d elements, and for each abelian subgroup, there exists a basis of joint eigenstates of all

V b
a in the subgroup. These d+1 bases are pairwise mutually unbiased. Let x ∈ Zd+1 label

the abelian subgroups, let l ∈ Zd label the elements of each subgroup, and let Ux
l denote

the corresponding subgroup operators. Finally, let the i−th basis element associated with

the x−th subgroup be denoted by |exi 〉. Then, it can be seen that [44],

Ux
l =

d−1∑
i=0

ωil |exi 〉〈exi | and |exi 〉 =
1√
d

d−1∑
l=0

ω−il+
l(l−1)

2
x |l〉 ,

where

Ux
l = αxl V

xl
l with αxl = ω−xl(l+1)/2.

One can show that

V b
a |ex0〉 = cx,a,b

∣∣exax−b〉 , x ∈ Zd and V b
a

∣∣ed0〉 = cd,a,b
∣∣eda〉 for x = d,

or more generally

V b
a |exr 〉 = ca,b,x,r

∣∣exax−b+r〉 , with ca,b,x,r = ωar+
a(a+1)

2
x. (6.2)

1Note that V 0
a and V b

0 can be seen as a generalization of the Pauli X and Z operators, respectively.

106

Proof. By definition, we have that

V b
a |exr 〉 =

1√
d

d−1∑
k,l=0

ω(k+a)b |k + a〉〈k|ω−rl+
l(l−1)

2
x |l〉

=
1√
d

d−1∑
l=0

ω(l+a)bω−rl+
l(l−1)

2
x |l + a〉

=
1√
d

d−1∑
l=0

ωlbω−r(l−a)+
(l−a)(l−a−1)

2
x |l〉

=
ωar√
d

d−1∑
l=0

ω−l(−b+r)ω
l(l−1)

2
x+lax+

a(a+1)
2

x |l〉

=
ωar√
d

d−1∑
l=0

ω−l(−b+r)ω
l(l−1)

2
x−lax+

a(a+1)
2

x |l〉

=
ωar+

a(a+1)
2

x

√
d

d−1∑
l=0

ω−l(ax−b+r)+
l(l−1)

2
x

= ωar+
a(a+1)

2
x|exax−b+r〉.

This last property is the main ingredient for the construction of our protocol as it

encodes a linear evaluation based on values a, b and x ∈ Zd2. In our protocol, we take

a, b – that determine the operators V b
a – to be Alice’s inputs and x to be Bob’s input.

Finally, let us see how the operators V b
a act on the so-called generalised Bell states,

since Bob’s attack to the protocol is based on that. We start with the definition of the

seed Bell state

|B0,0〉 =
1√
d

∑
i

|i∗, i〉 ,

where the map |ψ〉 → |ψ∗〉 is defined by taking the complex conjugate of the coefficients:

|ψ〉 =
∑
i

βi |i〉 → |ψ∗〉 =
∑
i

β∗i |i〉 .

Using the properties of the operators V b
a , we can derive the rest of the generalised Bell

states from the seed state, as

|Ba,b〉 = (1⊗ V b
a) |B0,0〉 =

1√
d

d−1∑
i=0

ω(i+a)b |i∗, i+ a〉 , (6.3)

2While x ∈ Zd+1, henceforth we consider x ∈ Zd, since we only use d out of the d+ 1 MUBs.

107

and one can prove that the set {|Ba,b〉}(a,b)∈Z2
d

constitutes an orthonormal maximally

entangled basis in the Hilbert space of two-qudit states [44].

6.3 Semi-honest QOLE protocol

In order to build some intuition on the proposed protocol for QOLE, we start by presenting

a simpler protocol that is only secure under the semi-honest adversarial model. This

semi-honest version leverages the properties of MUBs explored in Section 6.2 and, in

particular, the one presented in expression (6.2). As we saw, given the set of MUBs

{|exr 〉}r∈Zd , ∀x ∈ Zd, the operators V b
a simply permute the elements inside the basis x,

according to a linear combination of the elements a, b, x and r:

V b
a |exr 〉 = ca,b,x,r

∣∣exax−b+r〉 . (6.4)

Alice and Bob can use the above property to compute together a linear function f(x) =

ax− b, where Alice chooses the parameters a and b, and Bob chooses the input element x.

The protocol summarized in Figure 6.1. Bob starts by choosing a basis x and an element r

therein, and prepares the state |exr 〉: the basis choice x plays the role of the input element

x, and the basis element r is used to enhance Bob’s security against a potentially dishonest

Alice. Then, he sends the state |exr 〉 to Alice, who, in turn, applies on it the operator V b
a

and sends back to Bob the resulting state. According to (6.4), Bob receives
∣∣exax−b+r〉,

measures it in the x basis, and outputs the linear function evaluation f(x) = ax − b by

subtracting r. Thus, the correctness of the protocol is ensured by expression (6.4).

As far as the security of this protocol is concerned, we can easily see that it is secure

against a dishonest Alice. From her point of view, all the density matrices describing the

several possible cases for x = 0, . . . , d − 1 are maximally mixed states. Therefore, she

cannot know anything about the value of x.

If, moreover, Bob is semi-honest the protocol remains secure. On the other hand, if

Bob is dishonest and deviates from the protocol, he is able to find out Alice’s inputs a

and b with certainty. In Section 6.2 equation (6.3), we saw that the generalised Bell basis

is generated by Alice’s operators, V b
a , i.e. |Ba,b〉 = (1⊗ V b

a) |B0,0〉, and Bob can make use

of this property in order to extract her inputs a and b. His attack can be described as

follows:

1. Bob prepares the state |B0,0〉 and sends the second qudit to Alice.

2. Alice applies her chosen operator V b
a .

3. Bob measures both qudits in the generalised Bell basis and outputs a, b.

108

Semi-honest QOLE

Alice’s input: (a, b) ∈ Z2
d

Bob’s input: x ∈ Zd

1. Bob randomly generates r ∈ Zd. He prepares and sends the state |exr 〉 to Alice.

2. Alice prepares the operator V b
a according to her inputs a and b. She then

applies V b
a to Bob’s state: V b

a |exr 〉 = cx,a,b,r
∣∣exax−b+r〉. She sends the resulting

state back to Bob.

3. Bob measures in the basis x, subtracts r, and outputs the desired result
ax− b =: f(x).

Alice’s output: ⊥
Bob’s output: f(x)

Figure 6.1: Semi-honest QOLE protocol.

It becomes clear that the protocol is secure only as long as Bob does not deviate from

it; a dishonest Bob can break its security by performing the above attack. Therefore,

we have to make sure that Bob sticks to the protocol. To achieve this, we apply a

commit-and-open scheme [37] that can be briefly described as follows: Bob runs step 1.

of the Semi-honest QOLE protocol (see Figure 6.1) multiple times, say m in total, for

multiple values of xi, and ri, for i ∈ [m] and commits to these values by means of the

functionality FCOM (see Figure 2.5). Then, he sends these states to Alice, who, in turn,

asks him to disclose his chosen xi’s and ri’s for some of the m instances that she chooses.

The functionality FCOM forwards these committed values to Alice and she measures the

corresponding received states in the disclosed bases. She can, thus, verify whether she got

the right basis element for all the instances she chose to check. If Bob had used the Bell

state |B0,0〉 in one out of the m instances, then the probability of Alice getting the correct

result after measuring the state in the committed basis would be 1
d
. In other words, Bob

would get caught with high probability 1 − 1
d
. Furthermore, if he chooses to attack all

the instances, the probability of Alice getting correctly all the results is negligible, i.e.

exponentially small in the number of instances, m. We explore this in detail in the next

section, where we present a QOLE protocol secure against dishonest adversaries.

109

6.4 QOLE protocol

Our QOLE protocol is divided into two main phases: a quantum phase and a classical

post-processing phase. The first phase uses quantum communication to generate several

instances of OLE with random inputs. These instances may leak some information to the

parties, therefore we refer to them as random weak OLE (RWOLE). The second phase is

purely classical. It uses the RWOLE instances and extracts one classical OLE instance.

The post-processing phase has two phases. It implements a derandomization procedure

followed by an extraction phase that serves as a privacy amplification method. The full

protocol is presented in Figure 6.5. Before we continue, it is worth mentioning that we

consider that neither dishonest party maliciously aborts the protocol. Indeed, in our

setting, such a behaviour does not provide an advantage for learning the other party’s

input. The only case to abort the protocol is when honest Alice catches Bob cheating

during the commit-and-open stage.

In the next sections, we break down the protocol, show its correctness and retrieve

some technical lemmas used for the security proof. In Section 6.5, we prove the protocol

to be secure in the quantum-UC model against static dishonest adversaries.

Notation. During the RWOLE phase, F0 = (F 0
1 , F

0
2 , . . . , F

0
n) is the vector whose com-

ponents are the random variables associated to Alice’s functions. Each F 0
i ranges over

the set of affine functions in Zd such that P (F 0
i (x) = a0

ix + b0
i) is uniform for all i ∈ [n].

We do not distinguish the set of affine functions in Zd from Z2
d. The classical values

F0 are saved in the Hilbert space HF0 . The same holds for the derandomization phase,

where F denotes the random variable for Alice’s functions in the protocol Πn
WOLE. X0

and Y0 are the random variables for x0,y0 ∈ Znd in the RWOLE phase. and X and Y the

corresponding random variables for x,y ∈ Znd in the post-processing phase. Also, we use

A′ and B′ to denote the system that a dishonest Alice and Bob, respectively, hold at the

end of the execution of the protocol.

6.4.1 RWOLE phase

We now introduce the quantum phase of the proposed QOLE protocol, which we infor-

mally call the random weak OLE (RWOLE) phase. We denote by Πn
RWOLE the protocol

that implements this RWOLE phase and we present it in Figure 6.2. The protocol Πn
RWOLE

is divided into four phases: Initialization, Test, Computation and Measurement.

If both parties are honest the protocol is correct: if Alice is honest, her functions F0

are chosen uniformly at random, and if Bob is honest he will obtain
∣∣∣ex0

i

a0
i x

0
i−b0i+ri

〉
i∈[n]

according to Equation (6.4).

110

Protocol Πn
RWOLE

Parameters: n, number of output qudits; t, proportion of receiver test qudits.

(Initialization Phase:)

1. Bob randomly generates m = (1 + t)n different pairs (x0
i , ri) and commits

to them by sending (commit, (i, x0
i , ri)) to FCOM. He prepares the states∣∣∣ex0

i
ri

〉
i∈[m]

and sends them to Alice.

(Test Phase:)

2. Alice randomly chooses a subset of indices T ⊂ [m] of size tn and sends it to
Bob.

3. Bob sends (open, i), i ∈ T , to FCOM and FCOM sends to Alice
(open, (i, x0

i , ri)), i ∈ T .

4. Alice measures the received qudits in the corresponding x0
i basis for i ∈ T ,

and checks whether the received commitments are compatible with her mea-
surements. In case there is no error she proceeds, otherwise she aborts. After
the Test Phase, we relabel and identify [n] = [m] \ T .

(Computation Phase:)

6. Alice randomly generates n pairs (a0
i , b

0
i) and prepares V

b0i
a0
i

for i ∈ [n].

7. Alice applies these operators to the received states, i.e. V
b0i
a0
i

∣∣∣ex0
i
ri

〉
=

cx0
i ,a

0
i ,b

0
i ,ri

∣∣∣ex0
i

a0
i x

0
i−b0i+ri

〉
, for i ∈ [n], and sends the resulting states to Bob.

(Measurement Phase:)

8. Bob measures the received states in the basis x0
i for i ∈ [n] and gets the states∣∣∣ex0

i

a0
i x

0
i−b0i+ri

〉
, i ∈ [n]. Finally, he subtracts ri, for i ∈ [n] from his results.

Alice’s output: (a0
i , b

0
i), for i ∈ [n].

Bob’s output: (x0
i , y

0
i), where y0

i = gi(x
0
i) = a0

ix
0
i − b0

i for i ∈ [n].

Figure 6.2: RWOLE protocol.

Security. In the case of a dishonest Alice, it is straightforward to verify that the security

property of the semi-honest protocol still holds; following the same reasoning, we can

conclude that she cannot learn anything about Bob’s input or output values (x0
i , y

0
i).

In the case of dishonest Bob, though, these random instances of OLE might leak some

information on Alice’s random functions F0 to him. To quantify this side information of

Bob, we must bound the min-entropy Hmin(F0|B′)ρF0B
′ on the state ρF0B′ , which is the

111

output state of the real execution of Πn
RWOLE. The following lemma shows that ρF0B′ is

at least ε−close to an ideal state σF0B′ independently of the attack that the dishonest

party may perform. This ideal state σF0B′ has the important property of having a bound

on Hmin(F0|B′)σF0B
′ that is proportional to the security parameter.

Lemma 14 (Security against dishonest Bob). Let ρF0B′ be the state given by the real

execution of the protocol Πn
RWOLE, where F0 is the system saving Alice’s functions, B′ is

Bob’s (possibly quantum) system. Fix ζ ∈]0, 1− 1
d
] and let

ε(ζ, n) = exp

(
− 2ζ2t2n2

(nt+ 1)(t+ 1)

)
.

Then, for any attack of a dishonest Bob, there exists an ideal classical-quantum state

σF0B′, such that

1. σF0B′ ≈ε ρF0B′,

2. Hmin(F0|B′)σF0B
′ ≥ n log d

2
(1− hd(ζ)),

where hd(ζ) is given in Definition 1.

The proof comprises two parts corresponding to the two conditions of Lemma 14: first,

we prove that the state just before the Computation Phase is close to the ideal state σF0B′ ;

and then, we prove that the operators applied by Alice to σF0B′ increase the min-entropy

by a specific amount that is proportional to the number of output qudits, n. We present

the proof in B, where we follow the same reasoning as Damg̊ard et al. in Section 4.3 of

[37], and adapt it to our case. We also use certain results from [81] in order to establish

the lower bound given by property 2.

6.4.2 Post-processing phase

The Πn
RWOLE protocol (see Figure 6.2) generates several instances of RWOLE, which leak

information to Bob about Alice’s inputs. In this section, we present the post-processing

phase that allows to extract one secure QOLE out of several RWOLE instances. Com-

bining these instances is sufficient to generate a secure QOLE protocol, because Bob has

only a negligible probability of attacking all the weak instances without being caught;

indeed, if he chooses to attack one of the instances the probability of Alice not abort-

ing is 1
t+1

+ t
d(1+t)

, while if he chooses to attack all instances this probability becomes
1
dtn

, which is negligible in n, thus ensuring the asymptotic security of our protocol. The

post-processing comprises two subprotocols: the first is a derandomization protocol (Fig-

ure 6.3) that integrates the randomized outputs of RWOLE into a deterministic scheme

112

where Alice and Bob choose their inputs; the second is an extraction protocol (Figure

6.4) that generates a secure QOLE protocol from these deterministic weak instances by

means of a two-universal family of hash functions. Note that the classical post-processing

phase does not give any advantage to a potentially dishonest Alice, therefore we only need

to prove security against dishonest Bob.

Derandomization

Our derandomization protocol, denoted as Πn
WOLE and summarized in Figure 6.3, reduces

the randomized RWOLE instances into deterministic ones, which we informally call weak

OLE (WOLE). The output of Πn
WOLE is still a weak version of OLE because Bob is allowed

to have some knowledge on Alice’s inputs. The difference between RWOLE and WOLE is

that the parties now choose their inputs. Our derandomization protocol is an adaptation

of the derandomization protocol in [276]. We denote by ∗ the product of two matrices of

the same dimensions, such that the result is also a matrix of the same dimensions whose

elements are the product of the respective elements of the operand matrices.

Protocol Πn
WOLE

Alice’s input: (a, b) ∈ Z2n
d

Bob’s input: x ∈ Znd

1. Alice and Bob run the Πn
RWOLE protocol and receive (a0, b0) and (x0,y0),

respectively.

2. Bob computes and sends to Alice c = x− x0.

3. Alice computes and sends to Bob d = a− a0 and s = b0 + a ∗ c+ b.

4. Bob computes y = y0 + x ∗ d− d ∗ c+ s.

Alice’s output: ⊥
Bob’s output: y = a ∗ x+ b

Figure 6.3: WOLE protocol.

Security. The requirements to prove security against dishonest Bob are summarized in

Lemma 15, which is very similar in structure to Lemma 14. We show that the real output

state ρFB′ of the protocol Πn
WOLE is ε−close to an ideal state σFB′ , which has min-entropy

lower-bounded by a fixed value proportional to the security parameter n. Intuitively, this

means that Bob’s state is indistinguishable from a state where his knowledge on Alice’s

113

inputs is limited.

Lemma 15. Let ρFB′ be the state given by the real execution of the protocol Πn
WOLE,

where F is the system saving Alice’s inputs, B′ is Bob’s (possibly quantum) system. Fix

ζ ∈]0, 1− 1
d
] and let

ε(ζ, n) = exp

(
− 2ζ2t2n2

(nt+ 1)(t+ 1)

)
. (6.5)

Then, for any attack of a dishonest Bob, there exists a classical-quantum state σFB′ such

that

1. σFB′ ≈ε ρFB′,

2. Hmin(F|B′)σFB′ ≥
n log d

2
(1− hd(ζ)),

where hd(ζ) is given in Definition 1.

Proof. Alice holds the system A = FF0CDS, where F = (Fa,Fb) refers to her inputs

(a, b) ∈ Z2n
d , F0 = (Fa0 ,Fb0) is the subsystem obtained from the RWOLE phase, and

C,D and S are classical subsystems used to save the values of c, d, and s from the

protocol, respectively. Bob holds the system B′ = CDSB′0 where C,D and S are the

subsystems on Bob’s side where the values of c, d and s are saved, respectively, and

B′0 = Y0E0 is his (possibly quantum) system generated from the RWOLE phase.

To prove property 1., we will use Lemma 14, namely that the state ρF0B′0
resulting

from the RWOLE scheme is ε−close to the ideal state σF0B′0
. Then, we will show that

the operations applied to ρF0B′0
during the derandomization process can only decrease

the distance between the real and the ideal output states of the WOLE protocol, thus

keeping them at least ε−close. We start by specifying the operators corresponding to the

classical operations executed in steps 2 and 3 of Πn
WOLE. In step 2, a dishonest Bob can

send to Alice some value c that depends on his system B′0. So, he starts by applying a

CPTP map TB′0→CB′0
: P
(
HB′0

)
→ P

(
HB′0
⊗HC

)
to his state and then projects it into

the Hilbert space HC. The operator for step 2 is a CPTP map

O(2) : P
(
HF0 ⊗HB′0

)
→ P

(
HF0 ⊗HC ⊗HD ⊗HS ⊗HB′0

)
described by his action on some general quantum state ρ, as

O(2)(ρ) = 1⊗
∑
d,s,c

|c〉〈c|C TB′0→CB′0
(ρ) |c〉〈c|C ⊗ |d〉〈d|D ⊗ |s〉〈s|S .

In step 3, Bob takes no action. Since Alice is honest, the operator for this step simply

describes her action on subsystems D and S according to her choice at subsystem F. This

114

operator is a CPTP map

O(3) : P
(
HF0 ⊗HC ⊗HD ⊗HS ⊗HB′0

)
→ P

(
HF ⊗HF0 ⊗HC ⊗HD ⊗HS ⊗HB′0

)
described by his action on some general quantum state ρ, as

O(3)(ρ) =
1

d2n

∑
a,b

Pa,b ρ (Pa,b)†,

where

Pa,b = |a, b〉F ⊗
∑
a0,b0,c

|a0, b0〉〈a0, b0|F0
⊗ |c〉〈c|C

⊗ |a− a0〉〈a− a0|D ⊗ |b0 + a · c+ b〉〈b0 + a · c+ b|S .

Note that O(2) adds subsystems CDS and distributes C according to Bob’s action.

The operator O(3) adds subsystem F and projects DS according to the information at

subsystem FF0 and the expressions of d and s. Regarding the trace distance between the

real and ideal states, we have:

δ(ρF0B′0
, σF0B′0

) ≥ δ
(
O(2)(ρF0B′0

),O(2)(σF0B′0
)
)

≥ δ
(
O(3)O(2)(ρF0B′0

),O(3)O(2)(σF0B′0
)
)

= δ(ρFB′ , σFB′).

For the above inequalities, we took into account that O(2) and O(3) are CPTP maps, and

as such they do not increase the trace distance (see Lemma 1). For the last equality,

recall that B′ = CDSB′0. Now, from Lemma 14, we have that σF0B′0
≈ε ρF0B′0

. Hence,

we conclude that δ(ρFB′ , σFB′) ≤ ε(ζ, n) for ε(ζ, n) given as (6.5), i.e. σFB′ ≈ε ρFB′ .

We move on to prove property 2. Consider the bijective function gc,d,s : Z2n
d → Z2n

d

given by

gc,d,s(x,y) = (x+ d, s− y − (x+ d) ∗ c)

for fixed c,d and s. Essentially, gc,d,s describes how the input vector (a, b) is related to

the RWOLE output vector (a0, b0):

(a, b) = gc,d,s(a0, b0) = (a0 + d, s− b0 − (a0 + d) ∗ c). (6.6)

Intuitively, this means that the subsystem F is defined by the subsystems F0CDS. We

115

can rewrite the action of the operator O(3) on some general quantum state ρ as follows:

O(3)(ρ) =
1

d2n

∑
d,s

Pd,s ρ (Pd,s)†,

where

Pd,s =
∑
a0,b0,c

∣∣∣gc,d,s(a0, b0)
〉〈
a0, b0

∣∣∣
F
⊗ |a0, b0, c,d, s〉〈a0, b0, c,d, s|F0CDS

.

Hence, for the min-entropy bound, we have that:

Hmin(F |B′)σFB′ = Hmin(Fa,Fb |B′)σFB′
= Hmin(gC,D,S(Fa0 ,Fb0) |CDSB′0)O(3)O(2)σF0B

′
0

≥ Hmin(Fa0 ,Fb0 |CDSB′0)O(2)σF0B
′
0

(6.7)

≥ Hmin(Fa0 ,Fb0 |B′0)σF0B
′
0

(6.8)

≥ n log d

2
(1− hd(ζ)). (6.9)

The inequality at step (6.7) comes from Lemma 4, as gc,d,s is bijective. The inequality at

step (6.8) comes from Lemma 10, as the operator O(2) takes the form of O(2) = 1 ⊗M,

where M is a CPTP map. The last inequality comes from Lemma 14, property 2.

Extraction

In this section, we present our extraction protocol, ΠEXT, that generates one OLE in-

stance using the derandomization protocol Πn
WOLE and the two-universal family of hash

functions, MMH∗ (see [84] and Definition 5). This family uses the inner product between

two vectors in the Znd space, and since OLE only involves linear operations, we can apply

the inner product operation to all vectors a, b and y without affecting the overall struc-

ture. The protocol ΠEXT is summarized in Figure 6.4 and uses the n instances of WOLE

in such a way that Bob’s knowledge on Alice’s inputs decreases exponentially with respect

to n3 For this reason, n is our security parameter.

3This extraction step is similar to the privacy amplification step of QKD protocols.

116

Protocol ΠEXT

Alice’s input: (a, b) ∈ Z2
d

Bob’s input: x ∈ Zd

1. Alice chooses randomly some function gκ ∈MMH∗ and sends it to Bob.

2. Alice randomly generates a2, . . . , an, b2, . . . , bn ←$ Zd. She computes a1 =(
a −

∑n
i=2 aiκi

)
/κ1 and b1 =

(
b −

∑n
i=2 biκi

)
/κ1. We write a = (a1, . . . , an)

and b = (b1, . . . , bn).

3. Alice and Bob run the derandomization protocol Πn
WOLE((a, b),x). Bob re-

ceives y as output.

4. Bob computes y = gκ(y).

Alice’s output: ⊥
Bob’s output: y

Figure 6.4: Extraction protocol.

The correctness of ΠEXT is given by linearity:

y = gκ(y) = κ · (a1x+ b1, . . . anx+ bn)

= κ ·

(
a−

∑n
i=2 aiκi
κ1

x+
b−

∑n
i=2 biκi
κ1

, a2x+ b2, . . . , anx+ bn

)
= ax+ b.

Security. By definition, the derandomization protocol leaks some information to Bob

about Alice’s inputs (a, b). Since y = a ∗ x+ b, without loss of generality, any leakage

of Alice’s inputs can be seen as a leakage on just a. In this case, the min-entropy of

F = (Fa,Fb) should be the same as the min-entropy of Fa. Now, recall the FOLE

functionality definition (see Figure 2.3), and note that Bob does not possess any knowledge

about Alice’s input (a, b) other than what can be deduced from his input and output

(x, y). Similarly, since y = ax+ b, Bob has some knowledge on the relation between a and

b and – as b is completely determined by (a, x, y) – we only have to guarantee that a looks

uniformly random to Bob. The role of the hash functions used in the above protocol ΠEXT

is precisely to extract a uniformly random a from the leaky vector a, while preserving the

structure of the OLE. This result is summarized in Lemma 16 and its proof is based on

Lemma 11.

Lemma 16. Let ρFB′ be the state given by the real execution of the protocol ΠEXT, where

117

F is the system saving Alice’s inputs (a, b), B′ is Bob’s (possibly quantum) system. Fix

ζ ∈]0, 1− 1
d
] and let

ε(ζ, n) = exp

(
− 2ζ2t2n2

(nt+ 1)(t+ 1)

)
.

Then, for any attack of a dishonest Bob, there exists a classical-quantum state σFB′, where

F = (Fa, Fb), such that

1. σFB′ ≈ε ρFB′, and

2. δ(τZd ⊗ σB′ , σFaB′) ≤ K 2−n fd(ζ), where K =
√
d

2
, fd(ζ) = log d

4
(1 − hd(ζ)), n is the

security parameter, and hd(ζ) is given in Definition 1.

Proof. To prove property 1, we note that the extraction operation applied to the output

of Πn
WOLE can be described by a projective operator on the space F = (Fa, Fb). Therefore,

as in the case of Lemma 15, property 1 follows from the fact that CPTP maps do not

increase the trace distance (see Lemma 1).

Regarding property 2, let us first consider Bob’s subsystem E to integrate Bob’s inputs

x, i.e. E = XE ′. Then, his full system B′ is identified with YE = YXE ′. We have:

Hmin(F |YE)σFYE
= Hmin(Fa,Fb |YXE ′)σFYE

= Hmin(Fa,Y − FaX |YXE ′)σFaYE

= Hmin(Fa |YXE ′)σFaYE .

Therefore,

Hmin(Fa |YE)σFaYE ≥
n log d

2
(1− hd(ζ)).

Now, since MMH∗ is a two-universal family of hash functions, we can directly apply

Lemma 11 for l = 1. It follows that Fa is ξ−close to uniform conditioned on YE, i.e.

δ(τZd ⊗ σYE, σFaYE) ≤ 1

2

√
2log d−n log d

2
(1−hd(ζ)) = K 2−n fd(ζ) =: ξ

where K =
√
d

2
, fd(ζ) = log d

4
(1− hd(ζ)) and n is the security parameter.

Now, we are in position to combine the above subprotocols (Πn
RWOLE, Πn

WOLE and

ΠEXT) and present the full protocol ΠQOLE in Figure 6.5.

118

Protocol ΠQOLE

Parameters: n, security parameter; tn, number of test qudits.
Alice’s input: (a, b) ∈ Z2

d

Bob’s input: x ∈ Zd

(Quantum phase:)

1. Bob randomly generates m = (1 + t)n different pairs (x0i , ri) ∈ Z2
d and commits to them by

sending (commit, (i, x0i , ri)i∈[m]) to FCOM. He also prepares the quantum states
∣∣∣ex0

i
ri

〉
i∈[m]

and sends them to Alice.

2. Alice randomly chooses a subset of indices T ⊂ [m] of size tn and sends it to Bob.

3. Bob sends (open, i)i∈T to FCOM and FCOM sends to Alice (open, (i, x0i , ri))i∈T .

4. Alice measures the received quantum states in the corresponding x0i basis for i ∈ T , and
checks whether the received commitments are compatible with her measurements. She
proceeds in case there is no error, otherwise she aborts.

5. Alice randomly generates n pairs (a0i , b
0
i) ∈ Z2

d and prepares V
b0i
a0
i

for i ∈ [m] \T . We relabel

a0 = (a01, . . . , a
0
n), b0 = (b01, . . . , b

0
n) and x0 = (x01, . . . , x

0
n), and from now on identify

[m] \ T ≡ [n].

6. Alice ∀i ∈ [n] applies V
b0i
a0
i

to the received state
∣∣∣ex0

i
ri

〉
, i.e. V

b0i
a0
i

∣∣∣ex0
i

ri

〉
=

cx0
i ,a

0
i ,b

0
i ,ri

∣∣∣ex0
i

a0
ix

0
i−b0i+ri

〉
, and sends the resulting states to Bob.

7. Bob ∀i ∈ [n] measures the received state in the corresponding basis x0i , and gets the state∣∣∣ex0
i

a0
ix

0
i−b0i+ri

〉
. Finally, ∀i ∈ [n] he subtracts ri from his result and gets y0i = a0ix

0
i − b0i . We

write y0 = (y01 , . . . , y
0
n).

(Post-processing phase:)

8. Bob defines x = (x, . . . , x) as the constant vector according to his input x.

9. Alice chooses randomly some function gκ ∈ MMH∗, and she randomly generates
a2, . . . , an, b2, . . . , bn ←$ Zd. She computes a1 =

(
a −

∑n
i=2 aiκi

)
/κ1 and b1 =

(
b −∑n

i=2 biκi
)
/κ1. We write a = (a1, . . . , an) and b = (b1, . . . , bn).

10. Bob computes and sends to Alice c = x− x0.

11. Alice computes and sends to Bob d = a− a0 and s = b0 + a ∗ c+ b.

12. Bob computes y = y0 + x ∗ d− d ∗ c+ s.

13. Finally, Alice sends κ to Bob and he computes y = gκ(y).

Alice’s output: ⊥
Bob’s output: y

Figure 6.5: QOLE protocol.

6.5 UC security

In this section, we will show that our protocol ΠQOLE (see Figure 6.5) is quantum-UC

secure. More formally, we will show that ΠQOLE statistically quantum-UC realizes (see

Definition 6) the functionality FOLE in the FCOM−hybrid model.

119

Theorem 4 (quantum-UC security of ΠQOLE). The protocol ΠQOLE from Figure 6.5

statistically quantum-UC realizes (see Definition 6) FOLE in the FCOM−hybrid model.

Theorem 4 is proved by combining Lemma 17 and Lemma 18 that we present below.

In the former we prove the protocol’s security for the case where Alice is dishonest and

Bob is honest, while in the latter we prove security in the case where Alice is honest and

Bob dishonest. In the first case, we have:

Lemma 17. The protocol ΠQOLE (Figure 6.5) statistically quantum-UC realizes (see Def-

inition 6) FOLE in the FCOM−hybrid model in the case of dishonest Alice and honest Bob.

Proof. We start by presenting the simulator SA for the case where Alice is dishonest in

Figure 6.6.

To prove statistical quantum-UC security according to Definition 6, we first consider

a sequence of hybrid protocols from H0 to H4. The first hybrid protocol, H0, in the

sequence is the real execution of the protocol ΠQOLE, and we gradually change it until

obtaining the hybrid H4 which corresponds to the description of the simulator SA. By

proving indistinguishaility of the hybrids throughout the sequence, we show statistical

quantum-UC security for the protocol ΠQOLE in the case of dishonest Alice.

Hybrid H0: This is the real execution of the protocol ΠQOLE.

Hybrid H1: This hybrid is identical to the previous one, H0, except that we replace

the functionality FCOM with a fake commitment functionality, FFakeCOM, in which Bob,

i.e. the honest party, can commit no value. This fake functionality works as follows:

• Commitment phase: expects a commit message from Bob instead of (commit, x).

• Open phase: expects a message (open, x) (instead of open) and sends (open, x) to

Alice.

Hybrids H0 and H1 are perfectly indistinguishable, as the simulator still opens the

commitments in the same way.

Hybrid H2: This hybrid is identical to the previous one, H1, except that now SA
prepares entangled states |B0,0〉QAQS instead of

∣∣∣ex0
i
ri

〉
i∈[m]

, and sends the subsystem QA

to Alice. Additionally, upon receiving the set of indices, T , from Alice, SA measures the

corresponding elements of subsystem QS using tn randomly chosen bases x0
i and provides

(open, (i, x0
i , ri)) to FFakeCOM, ∀i ∈ T .

120

Simulator SA

(Quantum phase:)

1. SA sends commit to FFakeCOM.

2. SA generates m = (1 + t)n entangled states |B0,0〉QAQS and sends subsystem
QA to Alice.

3. Alice asks for a set of indices T ⊂ [m] of size tn.

4. SA measures the corresponding elements of subsystem QS using tn randomly
chosen bases x0

i and provides (open, (i, x0
i , ri)) to FFakeCOM, ∀i ∈ T .

5. Upon receiving the processed system Q̂A from Alice, SA measures the joint
system Q̂AQS and extracts the measurement outcomes F = (a0, b0) =(
(a0

1, . . . , a
0
n), (b0

1, . . . , b
0
n)
)
.

(Post-processing phase:)

6. SA randomly generates a vector c′ and sends to Alice.

7. Upon receiving d and s from Alice, SA extracts a and b based on its knowledge
of (a0, b0) as follows:

a = b+ a0

b = s− b0 − a ∗ c′.
(6.10)

8. Upon receiving κ from Alice, SA extracts her inputs (a, b) as follows:

a = a · κ
b = b · κ.

(6.11)

9. Finally, SA sends (a, b) to the ideal functionality FOLE.

Figure 6.6: Simulator SA against dishonest Alice.

Claim 5. The hybrids H1 and H2 are indistinguishable.

Proof. From Alice’s point of view, the state received is exactly the same in both hybrids.

In H1, since the elements r are chosen randomly,

1

d

d−1∑
r=0

∣∣∣ex0

r

〉〈
ex

0

r

∣∣∣ =
1A

d
,

121

for each x0 = 0, . . . , d− 1. In H2

TrQS |B0,0〉〈B0,0| =
1A

d
.

Thus, the environment is not able to distinguish the two scenarios. Furthermore, upon

Alice’s request of the test set, T , the simulator measures in random bases, x0
i for i ∈ T ,

the corresponding qudits of subsystem QS. Since both entangled qudits in QAQS get

projected to the some random state, ri for i ∈ T , FFakeCOM provides the correct pair

(x0
i , ri)i∈T to Alice. Hence, the hybrids H1 and H2 are indistinguishable.

Hybrid H3: This hybrid is identical to the previous one, H2, except that now SA
extracts Alice’s elements F0 = (a0, b0) by applying a joint measurement on the systems

Q̂AQS in the generalised Bell basis.

Hybrids H2 and H3 are perfectly indistinguishable, as the simulator only changes the

measurement basis for the received state and does not communicate with Alice.

Hybrid H4: This hybrid is identical to the previous one, H3, except that now SA
generates c′ uniformly at random. Additionally, upon receiving d, s and κ, the simulator

extracts Alice’s vectors (a, b) and inputs (a, b) by computing expressions (6.10) and (6.11).

Finally, SA sends (a, b) to the ideal functionality FOLE. Hybrid H4 corresponds to the

description of the simulator SA.

Hybrids H3 and H4 are perfectly indistinguishable for the following reasons: first, from

the proof of Claim 5, we have that the vector x0 looks uniformly random to Alice, and

consequently, so does c. Second, the extraction operations do not require any interaction

with Alice.

We now proceed to the case where Alice is honest and Bob is dishonest. We have:

Lemma 18. The protocol ΠQOLE (Figure 6.5) statistically quantum-UC realizes (see Def-

inition 6) FOLE in the FCOM−hybrid model in the case of honest Alice and dishonest Bob.

Proof. We start by presenting the simulator SB for the case where Bob is dishonest in

Figure 6.7.

Then, we consider the following sequence of hybrid protocols, from H0 corresponding to

the execution of the real protocol to H2 corresponding to the description of the simulator

SB, and prove that they are indistinguishable in the case of dishonest Bob.

122

Simulator SB

(Quantum phase:)

1. SB receives the qudits from Bob and tests them as in the protocol ΠQOLE.

2. SB randomly chooses vectors a0 and b0 and applies V
b0i
a0
i
, i ∈ [n] to the received

qudits.

3. SB extracts the input element x0 from FCOM.

(Post-processing phase:)

4. Upon receiving c from Bob, SB extracts his input x as x = c+ x0.

5. SB sends x to FOLE and receives y.

6. SB randomly generates the elements a′ ←$ Zd, κ ←$ Znd and
a2, . . . , an, b2, . . . , bn ←$ Zd.

7. SB computes b′ = a′x − y, a1 =
(
a′ −

∑n
i=2 aiκi

)
/κ1 and b1 =

(
b′ −∑n

i=2 biκi
)
/κ1.

8. SB sends d = a− a0, s = b0 + a ∗ c+ b and κ to Bob.

Figure 6.7: Simulator SB against dishonest Bob.

Hybrid H0: This is the execution of the real protocol ΠQOLE. In this hybrid, SB
behaves just like honest Alice up to step 6 of ΠQOLE: tests the received qudits (steps

1-4), randomly generates n pairs (a0
i , b

0
i)i∈[n] (step 5), and applies the respective operators

V
b0i
a0
i

for i ∈ [n] to the received states (step 6).

Hybrid H1: This hybrid is identical to the previous one, H0, except that now SB
extracts Bob’s random vector x0 from the commitment functionality FCOM. Additionally,

upon receiving c from Bob, SB extracts Bob’s input x by computing c + x0. Then, SB
sends the extracted element x to FOLE and receives y.

Hybrids H0 and H1 are perfectly indistinguishable, because SB only interacts with

Bob when receiving the element c, and this does not change anything from Bob’s point

of view. The corresponding operations are either carried out locally by SB or along with

FCOM which, by definition, is fully controlled by SB.

Hybrid H2: This hybrid is identical to the previous one, H1, except that now SB
generates (a, b), d and s as follows: it starts by randomly generating a′ ←$ Zd, κ←$ Znd

123

and a2, . . . , an, b2, . . . , bn ←$ Zd. Then, it computes b′ according to the generated a′, the

extracted element x and the output y of FOLE, as b′ = a′x− y. It then masks a′ and b′ as

a′ = a · κ and b′ = b · κ,

by setting a1 and b1 accordingly, i.e. a1 =
(
a′−

∑n
i=2 aiκi

)
/κ1 and b1 =

(
b′−
∑n

i=2 biκi
)
/κ1.

Finally, SB sends d = a− a0, s = b0 + a ∗ c+ b and κ to Bob. This is the last hybrid of

the sequence and corresponds to the description of the simulator SB.

Claim 6. The hybrids H1 and H2 are indistinguishable.

Proof. Since, in its first two steps, SB executes a RWOLE scheme, according to Lemma 14

we have that SB is ε−close to a situation where Bob’s knowledge on the vectors (a0, b0)

is lower-bounded by the value

1

n
λ(ζ) =

log d

2
(1− hd(ζ))

for ζ ∈]0, 1− 1
d
], n the security parameter and ε(ζ, n) = exp

(
− 2ζ2t2n2

(nt+1)(t+1)

)
. Also, as Bob

receives d and s, according to Lemma 15 his knowledge on (a, b) is also lower-bounded by

the same λ(ζ)/n. Furthermore, since SB defines a such that a′ = a · κ, from Lemma 16

we can conclude that SB is (ξ + ε)−close to a scenario where a′ is uniformly distributed.

This comes from the properties in Lemma 16 and the triangle inequality:

δ(τZd ⊗ σB′ , ρFaB′) ≤ δ(τZd ⊗ σB′ , σFaB′) + δ(σFaB′ , ρFaB′)

≤ K 2−n fd(ζ) + e−
2ζ2t2n2

(nt+1)(t+1) = ξ + ε

where K =
√
d

2
, fd(ζ) = log d

4
(1− hd(ζ)). This means that the triple (d, s,κ) only gives to

the environment a negligible advantage in distinguishing between the real and ideal world

executions.

This finishes the proof of Lemma 18.

6.6 Protocol generalizations

6.6.1 QOLE in Galois fields of prime-power dimensions

So far, we have been working in Hilbert spaces of prime dimensions; this reflects the fact

that, for prime d, Zd is a field and, under a well-defined set of MUBs {|exr 〉}r∈Zd , ∀x ∈ Zd,

124

we have the affine relation (6.4):

V b
a |exr 〉 = ca,b,x,r

∣∣exax−b+r〉 .
In this section, we generalise our protocol, ΠQOLE, to Hilbert spaces of prime-power

dimensions, N = dM (d prime and M > 1), taking advantage of the fact that in a Galois

field of dimension dM , GF (dM), we can build a complete set of N + 1 MUBs [44].

Succinctly, in GF (dM), we identify the integers i ∈ ZN with their d−ary representation,

i.e.

ZN 3 i =
M−1∑
n=0

ind
n ←→ (i0, . . . , iM−1) ∈ GF (dM).

In these fields there are two operations, addition and multiplication, which we denote by

⊕ and �, respectively. Addition is straightforward, as it is given by the component-wise

addition modulo d of elements, i.e. i ⊕ j = (i0 + j0 mod d, . . . , iM−1 + jM−1 mod d).

Considering i =
∑M−1

n=0 ind
n as a polynomial of degree M − 1 given by i(p) =

∑M−1
n=0 inp

n,

multiplication between two elements i, j, is given by the multiplication between the cor-

responding polynomials i(p) and j(p) modulo some irreducible polynomial m(p), i.e.

i� j =
(
i(p)× j(p)

)
mod m(p).

Analogously to prime-dimension fields, we can write the operators V b
a in the computa-

tional basis, as

V b
a =

N−1∑
k=0

|k ⊕ a〉ω(k⊕a)�b 〈k| ,

and the eigenstates for the corresponding N + 1 pairwise MUBs, as

|exr 〉 =
1√
N

N−1∑
l=0

|l〉ω	(r�l)αx∗	l,

where αx	l is a phase factor whose form depends on whether d is even or odd. For details,

see Section 2.4.2 in [44].

Given the above, we can derive the following affine relation similar to (6.4):

V b
a

∣∣eir〉 = ωr�aαi∗a
∣∣eii�a	b⊕r〉 . (6.12)

Proof. The relation (6.12) can be easily deduced by considering the following property

from [44] (Equation (2.56) in section 2.4.2)

αikα
i
l = αik⊕lω

i�k�l.

125

We have

V b
a

∣∣eir〉 =
1√
N

N−1∑
k,l=0

|k ⊕ a〉ω(k⊕a)�bω	r�l 〈k|l〉αi∗	l

=
1√
N

N−1∑
l=0

|l〉ωl�bω	r�(l	a)αi∗	(l	a)

=
1√
N

N−1∑
l=0

|l〉ωl�b	r�(l	a)
(
ω	(i�a�(l))αiaα

i
	l
)∗

= ωr�aαi∗a
1√
N

N−1∑
l=0

|l〉ωl�b	r�lω	(i�a�l)αi∗	l

= ωr�aαi∗a
1√
N

N−1∑
l=0

|l〉ω	(i�a	b⊕r)�lαi∗	l

= ωr�aαi∗a
∣∣eii�a	b⊕r〉 .

Notice that all the steps in the ΠQOLE depend on the properties of the field operations

(addition and multiplication) and on the fact that expression (6.4) holds. Hence, we can

use ΠQOLE adapted for the operations ⊕ and �, in order to quantum-UC-realize FOLE

in fields of prime-power dimension dM .

6.6.2 Quantum vector OLE

In the proposed protocol ΠQOLE, we extract one instance of OLE out of n instances of

WOLE. As far as efficiency is concerned, it would be desirable to generate more instances

of OLE out of those n instances of WOLE. Here, we show how to use WOLE as a resource

to realize the VOLE functionality, FVOLE, presented in Figure 2.4. In this case, Alice

fixes a k (which is specified later), defines a set of k linear functions (a, b) ∈ Fkq × Fkq and

Bob outputs the evaluation of all these functions on a specified element x ∈ Fq that he

chooses, i.e. f := ax + b. Since ΠQOLE can be extended to finite fields Fq, where q is

a prime or prime-power number (see Section 6.6.1), the FVOLE functionality can also be

defined in Fq.

In the extraction phase of ΠQOLE, Alice randomly chooses a function gκ and applies

it to the pair (a, b). This procedure suggests that, in order to generate different input

elements (a′, b′), Alice can randomly choose another function gκ′ and set a′ = gκ′(a) and

126

b′ = gκ′(b). This is equivalent to generating a random 2× n matrix in Fq, i.e.

 κ

κ′

 a b

 =

 a b

a′ b′

 .

However, in case κ and κ′ are linearly dependent (i.e. κ = cκ′ for some c ∈ Zd), Bob

would have some extra information about Alice’s elements (a, b) and (a′, b′), as (a, b) =

c(a′, b′). This leads to a situation beyond the FVOLE definition. To avoid this issue, let

us consider the set of k × n matrices with rank k over Fq for 1 ≤ k ≤ n, and denote it

by Rk×n(Fq). For a binary finite field, Rk×n(F2) is a two-universal hash family [277, 278].

Similarly, one can prove that the more general set Rk×n(Fq) is also a two-universal hash

family from Fnq to Fkq . During the extraction phase of the original ΠQOLE, Alice chooses

vectors (a, b) according to the random vector κ and the desired final elements (a, b) (see

step 9 in Figure 6.5). In that case, since there is only one random vector κ, there are

n − 1 undefined variables for each vector a and b, i.e. a2, . . . , an and b2, . . . , bn that

can be chosen freely. For the VOLE protocol, instead of choosing just one vector κ,

Alice randomly chooses a matrix K ∈ Rk×n(Fq) of rank k. She then defines vectors

(a′, b′) ∈ Fnq × Fnq consistent with the final elements (a, b) ∈ Fkq × Fkq . That is, Alice has

the following system:
κ1

. . .

κk

 a′ b′

 =

 a b

 ,

that can be solved by means of the Gaussian elimination method. Since K ∈ Rk×n(Fq),
there will be n− k undefined variables in both vectors a′ and b′. Let U denote the set of

undefined indexes in a′ and b′. Alice randomly chooses a′i and b′i for i ∈ U and solves the

above equation system. Then, they proceed similarly to the original ΠQOLE and execute

the derandomization protocol Πn
WOLE((a′, b′),x). Finally, Bob applies Alice’s chosen

matrix K to his output vector y′ to get the final element y. This vectorized extraction

protocol ΠVEXT is presented in Figure 6.8.

The correctness of the protocol is drawn immediately from linearity:

y = Ky′ = K(a′x+ b′) = ax+ b.

127

Protocol ΠVEXT

Alice’s input: (a, b) ∈ Fkq × Fkq
Bob’s input: x ∈ Fq

1. Alice chooses randomly a matrix K ∈ Rk×n(Fq) and sends it to Bob.

2. Using the Gaussian elimination method, Alice finds one solution of the system:

K

 a′ b′

 =

 a b

 .

(a) Alice finds the set U of undefined indexes in a′ and b′.

(b) Alice randomly generates a′i, b
′
i ←$ Fq for i ∈ U .

(c) Alice solves the system for indexes i /∈ U .

3. Alice and Bob run Πn
WOLE((a′, b′),x), where x = (x, . . . , x). Bob outputs

y′ ∈ Fnq .

4. Bob computes y = Ky′.

Alice’s output: ⊥
Bob’s output: y ∈ Fkq

Figure 6.8: Extraction protocol for VOLE.

The security of the protocol is constrained by the closeness parameter,

ξ =
1

2

√
2k log q−Hmin(X|E),

given by Lemma 11, where we consider l to be k and d to be q. As before, Fa′ denotes the

distribution of the Πn
WOLE protocol’s input a′ from Bob’s perspective. From Lemma 11,

since Rk×n(Fq) is a two-universal family of hash functions, we know that K ∈ Rk×n(Fq)
approximates KFa′ = Fa to uniform conditioned on Bob’s side information. However,

the closeness parameter has to be negligible in the security parameter n, thus setting a

bound on k (the size of VOLE), i.e. for η > 0,

k log q − n log q

2

(
1− hq(ζ)

)
< −nη log q

k < n
(1

2

(
1− hq(ζ)

)
− η
)
.

128

Since k > 0, we have that 0 < η < 1
2

(
1 − hq(ζ)

)
. This gives a bound on the proportion

of elements that we can extract from n WOLEs and shows how Alice can fix k in the

beginning. Note that this bound is not necessarily optimal, and one could try to improve

it. We leave this as future work, as it goes beyond the scope of this paper, which is to

introduce a quantum protocol for OLE that can be, in turn, adapted accordingly to also

achieve VOLE.

Let us denote by ΠQVOLE the protocol ΠQOLE with the subprotocol ΠVEXT instead

of ΠEXT. For the security of ΠQVOLE, we have:

Theorem 7 (quantum-UC security of ΠQVOLE). The protocol ΠQOVLE statistically quantum-

UC realizes (see Definition 6) FVOLE in the FCOM−hybrid model.

The proof is much the same as the proof of Theorem 4, therefore we omit it.

6.7 Conclusion

OLE is an important primitive for secure two-party computation, and while for stronger

primitives such as bit commitment, OT and coin flipping there is a plethora of both

theoretical as well as concrete protocol proposals [49, 130, 279–293], up until now, there

was no OLE protocol based on quantum communication. In this chapter, we present

two protocols for QOLE. The first protocol is secure against semi-honest adversaries in

the static corruption setting. The second proposed protocol, ΠQOLE, builds upon the

semi-honest version and extends it to the dishonest case, following a commit-and-open

approach. We prove this second protocol to be secure in the quantum-UC framework

when assuming ideal commitments, making it possible to be composed in any arbitrary

way. We also constructed two generalizations of our protocol: the first achieves QOLE in

Galois fields of prime-power dimensions and the second is a protocol for quantum vector

OLE. Note that our protocol achieves everlasting security, i.e. it remains information-

theoretically secure after its execution, even if the dishonest party becomes more powerful

in the future.

129

130

Chapter 7

Conclusion

In this thesis, the focus is on exploring and enhancing the utilization of quantum cryp-

tography in secure multiparty computation (SMC) systems.

Chapter 3 provides an overview of quantum oblivious transfer (QOT) protocols. Our

analysis is centered around the use of oblivious keys, which facilitate the modular ex-

ecution of secure multiparty computation (SMC) protocols by allowing the separation

of quantum technology and secure computation. We also examine the threat posed by

quantum hacking techniques and provide an evaluation of both practical and theoretical

measures to mitigate these attacks.

In Chapter 4, we conducted a theoretical comparison of the complexity of quantum and

classical OT protocols to assess their impact on the efficiency of SMC protocols. This is

motivated by the close connection between the Yao garbled circuit protocol and OT. We

proposed an optimized version (ΠBBCS
O) of the BBCS-based QOT protocols and compared

its transfer phase with that of the fastest known classical OT implementation, ALSZ13

[3]. Our conclusion was that the transfer phase of ΠBBCS
O has the potential to be faster

than that of the ALSZ13 OT extension while maintaining a much higher level of security.

In contrast, the ALSZ13 protocol is only proven to be secure in the semi-honest model,

whereas ΠBBCS
O is secure in the malicious setting. Furthermore, we compared the transfer

phase of maliciously secure classical protocols, ALSZ15 [197] and KOS15 [4], with that of

ΠBBCS
O and found that they have a greater computation and communication complexity

than ΠBBCS
O .

In Chapter 5, we bring theory closer to practice by presenting a SMC protocol that

uses quantum technologies to analyse distance-based algorithms of phylogenetic trees. Our

proposed system integrates the use of ready-to-use libraries, such as CBMC-GC, Libscapi,

and PHYLIP, to provide a complete, quantum-resistant solution. We implement and

compare the performance of both a classical-only and a quantum-assisted system using

simulated symmetric and oblivious keys.

131

In Chapter 6, we presented a two-phase quantum oblivious linear evaluation (QOLE)

protocol that, to the best of our knowledge, is the first quantum protocol proposed for

this primitive. We establish its security within the quantum-UC framework, under the

assumption of ideal commitments, thereby rendering it amenable to composition in a

versatile manner. Furthermore, we present two generalisations of our protocol: the first

attains QOLE in Galois fields of prime-power dimensions, while the second realizes quan-

tum vector OLE. It’s noteworthy that our protocol achieves everlasting security, ensuring

information-theoretical resilience even in the face of potential future empowerment of

dishonest parties after its execution.

7.1 Future work

Our findings outlined above have implications for both theoretical and practical areas

of research. In terms of practical implementation, one can strive for a more efficient

oblivious key management system. In the future, it would be beneficial to extend the

implementation of Libscapi to include a method to directly access the oblivious keys

stored in memory, potentially increasing efficiency.

In the theoretical realm, the work developed for protocol πQOLE can be expanded as

well. Currently, its security has been analysed in the absence of noise. Proving security

in the presence of noise would follow a similar approach (as seen in [37]). In case of noise,

during Step 4 of the quantum phase of πQOLE (depicted in Figure 6.5), Alice should abort

the protocol if the error measurement (err) exceeds a pre-defined value ν attributed to the

noise. This results in err = ν + ζ ′, where ζ ′ represents the potential dishonest behavior

of Bob. This adjustment reduces the lower bound of the min-entropy of Alice’s functions

F given Bob’s side information, i.e.

Hmin(F|YE)σFYE
≥ n log d

2
(1− hd(ν + ζ ′ + ζ)) .

While it is possible to extend the security of the protocol to include noise in the quantum

states, its correctness cannot be guaranteed in such scenarios. Therefore, as future work,

new protocols should be developed that account for noise and examine its impact on

the security properties. As an initial suggestion, one could build upon existing work.

The error-tolerant OLE combiner from [294] provides a way to integrate several possibly

faulty OLE instances into one correct OLE. Although this protocol ensures the correctness

of the protocol under noise, it does not include a privacy-amplification phase robust

against quantum side information. To bridge this gap, one could strive to apply a linear

strong extractor to each OLE instance [295]. For example, by considering a prime-power

132

dimension, dM , and the natural correspondence between ZdM and (Zd)M , one could use

the inner product seeded extractor in (Zd)M [296].

The πQOLE protocol can also be adapted to operate within the bounded-quantum-

storage model, while preserving its security. In this adaptation, the test phase of πnRWOLE

is replaced by a waiting time ∆t, limiting the amount of qudits that Bob can store.

Further investigation into the impact of different noisy channels on the security properties

of the protocol would be valuable. Additionally, to ensure the protocol’s composability,

an analysis within the bounded-quantum-storage-UC model, as proposed by Unruh [153],

should be performed.

Our protocol is a two-way scheme, in which Bob prepares and sends a quantum state,

Alice performs an operation on it, and returns it to Bob, who finally measures the final

state. There are several two-way QOT protocols in the literature [297–301], with the one

proposed by Amiri et al. [298] demonstrating their experimental feasibility. This drives

the motivation to further develop practical implementations of our protocol. Moreover,

the security of our protocol can be enhanced by making it device-independent. One

can look to the work of Kundu et al. [299] as inspiration, who built upon the work of

Chailloux et al. [300]. While the above-mentioned works primarily focus on two-way

QOT protocols, recent studies have also proposed one-way, non-interactive protocols for

device-independent [177] and XOR QOT [302].

Finally, based on our results, one could construct quantum protocols for oblivious

polynomial evaluation, which – as mentioned in the beginning of Chapter 6 – is another

important primitive facilitating various applications.

133

134

Appendix A

Jukes-Cantor distance for

CBMC-GC

The boolean circuit that represents the Jukes-Cantor distance receives as inputs two

four-based sequences (A, C, G, T) with size 32 000. Since we are using a boolean circuit

representation, the nucleotide sequences must be represented in binary. So, by convention,

we use the following 2-bit encoding: A = 00, C = 01, G = 10 and T = 11. As a result, we

start by defining a sequence type of size 4 000 with the unsigned short type elements

(Figure A.1, lines 1 − 5). In fact, the type Array Seq saves 4 000 × 16 = 64 000 bits.

Each element of Array Seq represents a small sequence of eight elements. This is an

implementation choice that renders a good compromise between accuracy level and circuit

size.

As we saw in the main text, the hamming distance between two binary strings can

then be easily computed by XORing them and counting the number of 1’s. This last

operation is commonly called popcount. We cannot directly apply this approach because

our sequences are in fact four-based sequences. In fact, our version of the popcount

function is only interested in computing the number of 2-bit elements that are different

between both sequences.

We follow a tailored divide-and-conquer technique. The original technique is described

by Henry Warren in his book “Hacker’s Delight”, Chapter 5 [253]. In summary, the

original technique starts by counting in parallel the number of 1’s inside each 2-bit block

and saves it in 2-bit blocks. Then, it adds two 2-bit blocks and saves the result in a 4-bit

block. It continues until we get the final sum. If we follow directly this approach we might

run into wrong results as described in the main text. For our case, instead of counting

the number of 1’s inside every 2-bit block, we only care if there is one element 1 inside

each 2-bit block. This simply indicates that the elements at that site are different. This

is achieved by applying an OR operation (represented by |) to the bits inside each 2-bit

135

block (Figure A.1, line 14). For 4-bit blocks and above we follow the same recipe of the

original divide-and-conquer technique.

The main function that computes the Hamming weight between two nucleotide se-

quences INPUT A and INPUT B is defined by the function mpc main, line 21. It outputs the

inverse of the hamming weight: total/distance line 37. Since we know the hamming

weight lies between 0 and 1, it renders smaller circuits to use the native integer division

operator, /, from the CBMC-GC tool and then invert the output after the Yao com-

putation. Otherwise, we would need a fixed precision representation to output decimal

numbers.

Below we describe the variables used in the mpc main function:

• INPUT A and INPUT B: the binary input sequences of Alice and Bob, respectively.

Following the CBMC-GC convention, the input elements must start with the iden-

tifier INPUT .

• OUTPUT distance: the inverse of the hamming weight. Following the CBMC-GC

convention, the output element must start with the identifier OUTPUT .

• total: keeps track of the number of elements that can be compared between aligned

sequences.

• distance: keeps track of the hamming distance between both sequences.

• count axorb: saves the number of elements that are different in a 16-bit block

sequence (i.e. in INPUT A.el[i]^INPUT B.el[i]).

136

1 #define LEN_SEQ 4000

2

3 typedef struct {

4 unsigned short el[LEN_SEQ];

5 } Array_Seq;

6

7 const unsigned int m1 = 0x55555555; // binary: 0101...

8 const unsigned int m2 = 0x33333333; // binary: 00110011..

9 const unsigned int m4 = 0x0f0f0f0f; // binary: 4 zeros , 4 ones ...

10 const unsigned int m8 = 0x00ff00ff; // binary: 8 zeros , 8 ones ...

11

12 unsigned int popcount(unsigned short INPUT_B_x) {

13 unsigned int x = INPUT_B_x;

14 x = (x & m1) | ((x >> 1) & m1); // changed step

15 x = (x & m2) + ((x >> 2) & m2);

16 x = (x & m4) + ((x >> 4) & m4);

17 x = (x & m8) + ((x >> 8) & m8);

18 return x;

19 }

20

21 void mpc_main(Array_Seq INPUT_A , Array_Seq INPUT_B){

22 unsigned int distance = 0;

23 int total = 0;

24 for(int i=0; i<LEN_SEQ; i++){

25 int count_a = popcount(INPUT_A.el[i]);

26 int count_b = popcount(INPUT_B.el[i]);

27 if(count_a > 0 && count_b > 0){

28 int count_axorb = popcount(INPUT_A.el[i]^ INPUT_B.el[i]);

29 if(count_axorb == 1){

30 distance = distance + 1;

31 }

32 total = total + 8;

33 }

34 }

35 unsigned int OUTPUT_distance;

36 if(distance > 0){

37 OUTPUT_distance = total/distance;

38 } else {

39 OUTPUT_distance = 0;

40 }

41 }

Figure A.1: Jukes-Cantor distance C code for CBMC-GC boolean circuit generation.

137

138

Appendix B

Proof of Lemma 14 (Dishonest Bob)

As we mentioned in the main text, this proof is a combination and adaptation of results

from [37] and [81] to our case.

To simplify the notation, in this proof we drop the subscript 0 that refers to the

RWOLE phase, e.g. we write Alice’s function vector F0, simply as F.

Let the values that Bob commits be fixed as (xi, ri)∀i ∈ [m], where m = (1 + t)n and

tn the number of qudits
∣∣exiri 〉 used in the Test Phase to check whether he is honest or not.

Throughout the proof we denote by x = (x1, . . . , xm) and r = (r1, . . . , rm) the vectors in

Zmd whose components contain Bob’s commitments ∀i ∈ [m], and by Xm = (X1, . . . , Xm)

the vector of the random variables associated to xi, i ∈ [m]. For each pair (xi, ri), the

corresponding qudit
∣∣exiri 〉 belongs in the Hilbert space HXi , and the quantum system

including all the qudits is in HXm =
⊗

i∈[m]HXi . For simplicity, we refer to the quantum

systems in terms of the corresponding random variables Xi, instead of the Hilbert spaces

HXi .

Recall that the set T ⊂ [m] contains the tn indices of the test qudits, and by T̄ we

denote its complement [m]\T . For i ∈ T , x|T is the vector whose components are the bases

xi in which Alice will measure the test qudits, and r′|T is the vector whose components

are Alice’s measurement results. The corresponding quantum system is in the Hilbert

space
⊗

i∈T HXi , which for simplicity we denote as Xm
|T in terms of the associated random

variables. Finally, rH(·, ·) = dH(·, ·)/n is the relative Hamming distance between two

vectors of size n, with dH(·, ·) being their Hamming distance.

Proof. Let us start by proving property 1. of Lemma 14. After the first step of the protocol

πnRWOLE (Figure 6.2), the generated state is ρXmE, where E is an auxiliary quantum system

that Bob holds. Without loss of generality we assume that ρXmE = |φXmE〉〈φXmE|, i.e, it

is a pure state.1 If Bob is honest, we have that |φXmE〉 = |exr 〉⊗ |ψE〉, i.e., Bob’s auxiliary

quantum system E is not entangled to the states that he sends to Alice.

1Otherwise, we purify it and carry the purification system along with E.

139

The Test Phase of the protocol is used to guarantee that the real state is close to an

ideal state that satisfies the properties 1. and 2. of Lemma 14. Let r′ be the vector whose

components are Alice’s outcomes when measuring the state of Xm in the committed bases

x, and let T be the random variable associated to the set of indexes T of size tn. We can

consider the state:

ρTXmE = ρT ⊗ |φXmE〉〈φXmE| =
∑
T

PT (T) |T 〉〈T | ⊗ |φXmE〉〈φXmE| , (B.1)

to be the state resulting from the real execution of the protocol, and prove that it is close

to some state, σTXmE, that fulfills the following property: for any choice of T and for

any outcome r′|T when measuring the state of Xm
|T in the bases x|T , the relative error

rH(r′|T , r|T) is an upper bound on the relative error rH(r′|T̄ , r|T̄), which one would obtain

by measuring the remaining subsystems Xm
|T̄ in the bases x|T̄ . This state, σTXmE, can

be written as:

σTXmE =
∑
T

PT (T) |T 〉〈T | ⊗
∣∣∣φ̃TXmE

〉〈
φ̃TXmE

∣∣∣ , (B.2)

where ∀T , ∣∣∣φ̃TXmE

〉
=
∑
r′∈BT

αTr′ |exr′〉 ⊗
∣∣∣ψr′E 〉 , (B.3)

for BT = {r′ ∈ Zmd : rH(r′|T̄ , r|T̄) ≤ rH(r′|T , r|T) + ζ} for ζ > 0 and arbitrary coefficients

αTr′ . The state
∣∣ψr′E 〉 is an arbitrary state on E subsystem that possibly depends on r′.

Then we have:

Lemma 19. Let the quantum states ρTXmE and σTXmE be given by (B.1) and (B.2),

respectively. Then, ∀ζ > 0 and fixed strings x, r ∈ Zmd , we have that

ρTXmE ≈ε σTXmE,

where ε(ζ, n) = ε(ζ, n) = exp
(
− 2ζ2t2n2

(nt+1)(t+1)

)
. That is, the real state ρTXmE is exponentially

close, with respect to n, to the ideal state σTXmE.

Proof. This proof is an adaptation of the proof of Lemma 4.3 from [37] to our case.

For any T , let
∣∣∣φ̃TXmE

〉
be the renormalized projection of |φXmE〉 into the subspace

Span {|exr′〉 : r′ ∈ BT} ⊗HE,

and let
∣∣∣φ̃T⊥XmE

〉
be the renormalized projection of |φXmE〉 into its orthogonal complement.

We can, then, write

|φXmE〉 = εT

∣∣∣φ̃TXmE

〉
+ ε⊥T

∣∣∣φ̃T⊥XmE

〉
,

140

with εT =
〈
φ̃TXmE

∣∣∣φXmE

〉
and ε⊥T =

〈
φ̃T
⊥

XmE

∣∣∣φXmE

〉
. By construction, this state satisfies

(B.3).

Furthermore, we can calculate the distance:

δ
(
|φXmE〉〈φXmE| ,

∣∣∣φ̃TXmE

〉〈
φ̃TXmE

∣∣∣) =

√
1−

∣∣∣〈φ̃TXmE

∣∣∣φXmE

〉∣∣∣2 =
√

1− |εT |2 = |ε⊥T |,

where, given T , |ε⊥T | is the probability amplitude for getting outcome r′ /∈ BT when

measuring the state of Xm in bases x. We continue to derive an upper bound on the

distance between the real and the ideal state:

δ
(
ρTXmE, σTXmE

)
=

(∑
T

PT (T)δ
(
|φXmE〉〈φXmE| ,

∣∣∣φ̃TXmE

〉〈
φ̃TXmE

∣∣∣))2

≤
∑
T

PT (T)|ε⊥T |2,

where we used Jensen’s inequality and properties of the trace norm. The last term is the

probability that, when choosing T according to PT and measuring the state of Xm in

bases x we get an outcome r′ /∈ BT . We write

∑
T

PT (T)|ε⊥T |2 = PrT [r′ /∈ BT] = PrT [rH(r′|T̄ , r|T̄)− rH(r′|T , r|T) > ζ].

Then, we can use Lemma 2 which states that the above probability is negligible in n

and gives us an upper bound for δ
(
ρTXmE, σTXmE

)
. In particular, given the set [m] with

(1 + t)n elements, we apply the aforementioned corollary for a random subset T of size

tn and its complement T̄ of size n. Denoting by µT and µT̄ , respectively, the averages of

these subsets, we obtain

P[µT̄ − µT ≥ ζ] ≤ exp

(
− 2ζ2t2n2

(nt+ 1)(t+ 1)

)
.

Hence, we have:

δ
(
ρTXmE, σTXmE

)
≤
∑
T

PT (T)|ε⊥T |2 ≤ exp

(
− 2ζ2t2n2

(nt+ 1)(t+ 1)

)
=: ε, (B.4)

concluding the proof of Lemma 19, i.e. that the real state (B.1) generated by the protocol

until the Computation Phase is ε−close to the ideal state (B.2).

It is now straightforward to complete the proof of property 1. of Lemma 14.

To obtain the states σFB′ and ρFB′ from the states σTXmE and ρTXmE, respectively,

we need to apply the operator V ba TrXm
|T E|T

[·]V b†a . This operator is a CPTP map, being

141

the composition of the two CPTP maps, V ba and Tr. Since the trace distance between

two density matrices does not increase under CPTP maps (see Lemma 7 in [76]), the final

states indeed satisfy property 1. of Lemma 14, namely

σFB′ ≈ε ρFB′ .

For the rest of this proof dishonest Bob’s system B′ is identified with YE, where Y

corresponds to the classical information leaking to him through the output of the WROLE

and E is, in general, a quantum auxiliary system that he might also hold. Consequently,

from now on we write σFB′ as σFYE. Now, we have to prove property 2. of Lemma 14,

i.e., obtain the corresponding lower bound on min-entropy with respect to σFYE. We

start with the following Lemma 20:

Lemma 20 (Corollary 4.4 in [37]). Let err := rH(r′|T , r|T) ≤ 1− 1
d

be the error measured

by Alice while measuring the state of Xm
|T according to her choice of T , and let σXE :=

|ψ〉〈ψ|XE be the state to which the ideal state σTXmE collapses after this measurement.

Following (B.2) and (B.3), we write |ψ〉XE =
∑
z∈B αz |exz〉 |ψzE〉 for some |ψzE〉 and B =

{z ∈ Znd : rH(z, r|T̄) ≤ err + ζ} with ζ > 0. Then, we have:

Hmin(X|E)σXE ≥ −hd(err + ζ)n log d, (B.5)

where hd(x) is given in Definition 1.

Proof. We start by defining the state σ̃XE :=
∑
z∈B |αz|2 |exz〉〈exz | ⊗ |ψzE〉〈ψzE|. Then, by

applying Lemma 5, we obtain

Hmin(X|E)σXE ≥ Hmin(X|E)σ̃XE − log |B|.

Since σ̃XE is a classical-quantum state, its min-entropy cannot be negative, i.e.

Hmin(X|E)σ̃XE ≥ 0,

thus Hmin(X|E)σXE ≥ − log |B|.
Finally, to get the lower bound shown in (B.5), we apply Lemma 3 to our case, namely

for the Hamming ball around r|T̄ with radius n(err + ζ).

To complete the proof of property 2. of Lemma 14 and find a lower bound on

Hmin(F|YE)σFYE we need to relate it with Hmin(X|E)σXE , for which we just derived

a lower bound. In what follows, we adapt the notation from [81]:

142

• ΦXX̄ = |Φ〉〈Φ|XX̄, where |Φ〉XX̄ =
∑
s |exs 〉X⊗|exs 〉X̄ for all basis choices x ∈ Znd , and

• Φ(a,b) =
∣∣Φ(a,b)

〉〈
Φ(a,b)

∣∣ =
∑
ss′ V

b
a |exs 〉〈exs′ |V b†a ⊗ |exs 〉〈exs′|, with

∣∣Φ(a,b)

〉
= (V ba ⊗

1) |Φ〉XX̄, for (a, b) ∈ Z2
d

and we use the following properties of the operators V b
a , which can be derived from (6.2):

1. V b
a |exi 〉〈exi |V b†

a =
∣∣exax−b+i〉〈exax−b+i∣∣,

2. V b
a =

∑
j ca,b,j,x

∣∣exax−b+j〉〈exj ∣∣,
3. V b†

a =
∑

j c
∗
a,b,j,x

∣∣exj 〉〈exax−b+j∣∣.
The following lemma, which is an adaptation of Theorem 12 in [81] to our case, provides

a lower bound for Hmin(F|YE)σFYE
in terms of Hmin(X|E)σXE :

Lemma 21. Let X denote our n-qudit system and σXE be the ideal quantum state to

which the system collapsed after Alice’s test measurements, as introduced before. Then,

we have:

Hmin(F|YE)σFYE
≥ 1

2

(
n log d+ Hmin(X|E)σXE

)
,

where

σFYE =
1

d2n

∑
(a,b)∈Z2n

d

|exa, exb 〉〈exa, exb | ⊗ V ba σXE V b†a , (B.6)

is the state obtained when V ba is applied to the system X according to F.

Proof. This proof is an adaptation of the proof of Theorem 12 in [81] to our case. Let

us fix x ∈ Zd and write |i〉 = |exi 〉 for short. V b
a is a CPTP map, and it is known that

the min-entropy does not decrease whenever a CPTP map is applied. However, this is

not enough to prove the security of the protocol and determine a lower bound. We need

a more refined expression relating Hmin(M(X)|E) and Hmin(X|E) for some CPTP map

M. This is given by Lemma 6, which can be applied for

MX→FY = N⊗n,

where N (σX) = 1
d2

∑
(a,b)∈Z2

d
Na,bσXN †a,b = 1

d2

∑
(a,b)∈Z2

d

(
|a, b〉 ⊗ V b

a

)
σX

(
〈a, b| ⊗ V b†

a

)
.

The operator N applies the operator V b
a to the single system X and saves its choice (a, b)

to a new record in the F space.

To use Lemma 6, we have to prove that ((M† ◦M)X ⊗ idX̄)(ΦXX̄) can be written as

a linear combination of Φ(a,b), i.e.

((M† ◦M)X ⊗ idX̄)(ΦXX̄) =
∑

(a,b)∈Z2n

λ(a,b)Φ(a,b).

143

First, note that

N (|i〉〈j|) =
1

d2

∑
(a,b)∈Z2

d

(
|a, b〉 ⊗ V b

a

)
|i〉〈j|

(
〈a, b| ⊗ V b†

a

)
1
=

1

d2

∑
(a,b)∈Z2

d

|a, b〉〈a, b| ⊗ |ax− b+ i〉〈ax− b+ j| , (B.7)

where we used the property 1. We proceed to compute N † ◦ N |i〉〈j|:

N † ◦ N |i〉〈j| = 1

d2

∑
(a′,b′)∈Z2

d

N †a′b′(N |i〉〈j|))Na′b′

eq.(B.7)
=

1

d4

∑
(a′,b′),(a,b)∈Z2

d

(
〈a′, b′| ⊗ V b′†

a′

)
|a, b〉〈a, b|

⊗ |ax− b+ i〉〈ax− b+ j|
(
|a′, b′〉 ⊗ V b′

a′

)
2,3
=

1

d4

∑
(a,b)∈Z2

d

V b†
a |ax− b+ i〉〈ax− b+ j|V b

a

=
1

d4

∑
(a,b)∈Z2

d

|i〉〈j|

=
1

d2
|i〉〈j| , (B.8)

and

((N † ◦ N)X ⊗ idX̄)(ΦXX̄) =
∑
i,j

N † ◦ N (|i〉〈j|)⊗ |i〉〈j|

eq.(B.8)
=

∑
i,j

(1

d2
|i〉〈j|

)
⊗ |i〉〈j|

=
1

d2

∑
i,j

|i〉〈j| ⊗ |i〉〈j|

=
1

d2
ΦXX̄ . (B.9)

Therefore, we have that

(
(N † ◦ N)X ⊗ idX̄

)
(ΦXX̄) =

1

d2
Φ(0,0), (B.10)

from which we easily see that

(
(M† ◦M)X ⊗ idX̄

)
(ΦXX̄) =

1

d2n
Φ(0,0). (B.11)

144

Consequently,

λ(a,b) =

1
d2n if (a, b) = (0,0)

0 otherwise.

Now, we want to choose the partition that gives us the best lower bound on the collision

entropy, i.e. decreases the r.h.s of the following relation:

2−H2(FY|E)σFYE ≤
∑

(a,b)∈S+

λ(a,b)2
−H2(X|E)σXE + (max

(a,b)∈S−
λ(a,b))d

n.

Note that we dropped the conditioning on the state σXE at H2(FY|E)σFYE
. This is

because the mapM is trace-preserving (for a detailed explanation see [81] below Theorem

1). For our case there are just two types of partitions: the case where 0 ∈ S+ and the

case where 0 ∈ S−. If 0 ∈ S+:

r.h.s =
∑

(a,b)∈S+

λs2
−H2(X|E)σXE =

1

d2n
2−H2(X|E)σXE ≤ 1

dn
.

The last inequality holds because −n log d ≤ H2(X|E)σXE ≤ n log d. In fact,

1

d2n
2−H2(X|E)σXE ≤ 1

dn
⇐⇒ 2−H2(X|E)σXE ≤ dn ⇐⇒ H2(X|E)σXE ≥ −n log d.

If 0 ∈ S−, r.h.s = 1
dn

which, as we have just seen by the previous inequality, does not

provide a better lower bound on the collision entropy whenever H2(X|E)σXE 6= −n log d.

So, choosing any partition such that 0 ∈ S+, we get

2−H2(FY|E)σFYE ≤
∑

(a,b)∈S+

λ(a,b)2
−H2(X|E)σXE + (max

(a,b)∈S−
λ(a,b))d

n =
1

d2n
2−H2(X|E)σXE ,

from which we conclude that

H2(FY|E)σFYE
≥ 2n log d+ H2(X|E)σXE . (B.12)

In order to relate H2(FY|E)σFYE
with H2(F|YE)σFYE

, we use the chain rule given by

Lemma 7:

H2(F|YE)σFYE
≥ H2(FY|E)σFYE

− log rank(σY) ≥ H2(FY|E)σFYE
− n log d, (B.13)

since log rank(σY) ≤ n log d. Combining (B.12) and (B.13), we get the desired result:

H2(F|YE)σFYE
≥ n log d+ H2(X|E)σXE .

145

To express the above relation in terms of the min-entropy instead of the collision entropy,

we start by noticing that the state given in (B.6) can be written as

σFYE =
1

d2n

∑
(a,b)∈Z2n

d

|a, b〉〈a, b| ⊗ V ba σXE V b†a =
1

d2n

∑
(a,b)∈Z2n

d

|a, b〉〈a, b| ⊗ σa,bXE, (B.14)

which is a classical-quantum state. Therefore, we can use Lemma 18 from [81] to obtain

Hmin(F|YE)σFYE
≥ 1

2
(n log d+ H2(X|E)σXE) .

Furthermore, σXE is a general quantum state, and from Lemma 17 in [81] we have

Hmin(F|YE)σFYE
≥ 1

2
(n log d+ Hmin(X|E)σXE) .

To complete the proof of property 2. of Lemma 14, we combine Lemma 20 and

Lemma 21 and obtain:

Hmin(F|YE)σFYE
≥ 1

2
(n log d− hd(ζ)n log d) =

n log d

2
(1− hd(ζ)),

for err = 0.

146

Bibliography

[1] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved gar-

bled circuit building blocks and applications to auctions and computing minima. In

Cryptology and Network Security, pages 1–20. Springer Berlin Heidelberg, 2009.

[2] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications.

In Proceedings on Advances in Cryptology, CRYPTO -89, pages 547–557, Berlin,

Heidelberg, 1989. Springer-Verlag.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-

cient oblivious transfer and extensions for faster secure computation. In Proceedings

of the 2013 ACM SIGSAC Conference on Computer & Communications Security,

CCS ’13, pages 535–548, New York, NY, USA, 2013. Association for Computing

Machinery.

[4] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure ot extension

with optimal overhead. In Advances in Cryptology - CRYPTO 2015, volume 9215

of Lecture Notes in Computer Science, pages 724–741. Springer, August 2015. Date

of Acceptance: 08/05/2015.

[5] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distri-

bution and coin tossing. Theoretical Computer Science, 560:7–11, December 2014.

[6] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène Sku-

biszewska. Practical quantum oblivious transfer. In Joan Feigenbaum, editor, Ad-

vances in Cryptology — CRYPTO ’91, pages 351–366, Berlin, Heidelberg, 1992.

Springer Berlin Heidelberg.

[7] G. Brassard, C. Crepeau, R. Jozsa, and D. Langlois. A quantum bit commitment

scheme provably unbreakable by both parties. In Proceedings of 1993 IEEE 34th

Annual Foundations of Computer Science. IEEE, 1993.

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation. In Proceedings of the

147

Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, page 1–10,

New York, NY, USA, 1988. Association for Computing Machinery.

[9] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure proto-

cols. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of

Computing, STOC ’90, page 503–513, New York, NY, USA, 1990. Association for

Computing Machinery.

[10] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally se-

cure protocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory

of Computing, STOC ’88, page 11–19, New York, NY, USA, 1988. Association for

Computing Machinery.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,

STOC ’87, page 218–229, New York, NY, USA, 1987. Association for Computing

Machinery.

[12] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and

Thomas Schneider. HyCC. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security. ACM, January 2018.

[13] M. Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA ’01,

2001.

[14] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,

February 1978.

[15] Jun Wang. Personal genomes: For one and for all. Science, 331(6018):690–690,

2011.

[16] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse

datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111–

125, 2008.

[17] Latanya Sweeney. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570,

2002.

[18] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,

Jill Muehling, John V. Pearson, Dietrich A. Stephan, Stanley F. Nelson, and

148

David W. Craig. Resolving individuals contributing trace amounts of DNA to highly

complex mixtures using high-density SNP genotyping microarrays. PLoS Genetics,

4(8):e1000167, August 2008.

[19] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich. Identifying

personal genomes by surname inference. Science, 339(6117):321–324, January 2013.

[20] 2016 reform of eu data protection rules. https://eur-

lex.europa.eu/eli/reg/2016/679/oj, 2016.

[21] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From

theory to practice. Synthesis Lectures on Information Security, Privacy, and Trust,

8(4):1–138, October 2016.

[22] Frederik Armknecht, C. Boyd, Christopher Carr, K. Gjøsteen, Angela Jäschke,

Christian A. Reuter, and Martin Strand. A guide to fully homomorphic encryp-

tion. IACR Cryptol. ePrint Arch., 2015:1192, 2015.

[23] A. C. Yao. Protocols for secure computations. In 23rd Annual Symposium on

Foundations of Computer Science (sfcs 1982), pages 160–164, 1982.

[24] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In

Proceedings of the nineteenth annual ACM conference on Theory of computing -

STOC ’87. ACM Press, 1987.

[25] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-

homomorphic encryption and multiparty computation. In Advances in Cryptology

– EUROCRYPT 2011, pages 169–188. Springer Berlin Heidelberg, 2011.

[26] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-

putation from somewhat homomorphic encryption. In Lecture Notes in Computer

Science, pages 643–662. Springer Berlin Heidelberg, 2012.

[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security.

ACM, October 2016.

[28] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way per-

mutations. In Proceedings of the Twenty-First Annual ACM Symposium on Theory

of Computing, STOC ’89, page 44–61, New York, NY, USA, 1989. Association for

Computing Machinery.

149

[29] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–

1509, 1997.

[30] Anne Broadbent and Christian Schaffner. Quantum cryptography beyond quantum

key distribution. Designs, Codes and Cryptography, 78(1):351–382, December 2015.

[31] A. N. Pinto, N. A. Silva, A. Almeida, and N. J. Muga. Using quantum technologies

to improve fiber optic communication systems. IEEE Communications Magazine,

8(51):42–48, August 2013.

[32] Andre Chailloux and Iordanis Kerenidis. Optimal bounds for quantum bit commit-

ment. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

IEEE, October 2011.

[33] André Chailloux and Iordanis Kerenidis. Optimal quantum strong coin flipping. In

2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE,

October 2009.

[34] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum

computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer

Science. IEEE, October 2009.

[35] Dominique Unruh. Quantum position verification in the random oracle model. In

Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO

2014, pages 1–18, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[36] Ivan Damg̊ard, Serge Fehr, Louis Salvail, and Christian Schaffner. Secure identi-

fication and QKD in the bounded-quantum-storage model. Theoretical Computer

Science, 560:12–26, December 2014.

[37] Ivan Damg̊ard, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian

Schaffner. Improving the security of quantum protocols via commit-and-open. In

Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 408–427, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[38] Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious trans-

fer is in miniqcrypt. In Anne Canteaut and François-Xavier Standaert, editors, Ad-

vances in Cryptology – EUROCRYPT 2021, pages 531–561, Cham, 2021. Springer

International Publishing.

150

[39] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way

functions imply secure computation in a quantum world. In Tal Malkin and Chris

Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 467–496, Cham,

2021. Springer International Publishing.

[40] Russel Impagliazzo and Steven Rudich. Limits on the provable consequences of

one-way permutations. In Proceedings of the Twenty-First Annual ACM Sympo-

sium on Theory of Computing, STOC ’89, page 44–61, New York, NY, USA, 1989.

Association for Computing Machinery.

[41] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The rela-

tionship between public key encryption and oblivious transfer. In Proceedings 41st

Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc, 2000.

[42] Dominique Unruh. Universally composable quantum multi-party computation. In

Advances in Cryptology – EUROCRYPT 2010, pages 486–505. Springer Berlin Hei-

delberg, 2010.

[43] H. Bechmann-Pasquinucci and W. Tittel. Quantum cryptography using larger al-

phabets. Phys. Rev. A, 61:062308, May 2000.

[44] Thomas Durt, Berthold-Georg Englert, Ingemar Bengtsson, and Karol Zyczkowski.

On mutually unbiased bases. International Journal of Quantum Information,

08(04):535–640, 2010.

[45] Tian Zhong, Hongchao Zhou, Robert D Horansky, Catherine Lee, Varun B Verma,

Adriana E Lita, Alessandro Restelli, Joshua C Bienfang, Richard P Mirin, Thomas

Gerrits, Sae Woo Nam, Francesco Marsili, Matthew D Shaw, Zheshen Zhang, Ligong

Wang, Dirk Englund, Gregory W Wornell, Jeffrey H Shapiro, and Franco N C

Wong. Photon-efficient quantum key distribution using time–energy entanglement

with high-dimensional encoding. New Journal of Physics, 17(2):022002, 2015.

[46] Frédéric Bouchard, Natalia Herrera Valencia, Florian Brandt, Robert Fickler, Mar-

cus Huber, and Mehul Malik. Measuring azimuthal and radial modes of photons.

Opt. Express, 26(24):31925–31941, Nov 2018.

[47] Mirdit Doda, Marcus Huber, Gláucia Murta, Matej Pivoluska, Martin Plesch, and

Chrysoula Vlachou. Quantum key distribution overcoming extreme noise: Simulta-

neous subspace coding using high-dimensional entanglement. Phys. Rev. Applied,

15:034003, Mar 2021.

151

[48] Manuel B. Santos, Paulo Mateus, and Chrysoula Vlachou. Quantum universally

composable oblivious linear evaluation, 2022.

[49] Manuel B. Santos, Paulo Mateus, and Armando N. Pinto. Quantum oblivious

transfer: A short review. Entropy, 24(7):945, July 2022.

[50] Manuel B. Santos, Ana C. Gomes, Armando N. Pinto, and Paulo Mateus. Private

computation of phylogenetic trees based on quantum technologies. IEEE Access,

10:38065–38088, 2022.

[51] Manuel B. Santos, Armando N. Pinto, and Paulo Mateus. Quantum and classical

oblivious transfer: A comparative analysis. IET Quantum Communication, 2(2):42–

53, May 2021.

[52] Manuel B. Santos, Ana C. Gomes, Armando N. Pinto, and Paulo Mateus. Quantum

secure multiparty computation of phylogenetic trees of SARS-CoV-2 genome. In

2021 Telecoms Conference (ConfTELE). IEEE, February 2021.

[53] Armando N. Pinto, Laura Ortiz, Manuel Santos, Ana C. Gomes, Juan P. Brito,

Nelson J. Muga, Nuno A. Silva, Paulo Mateus, and Vicente Martin. Quantum

enabled private recognition of composite signals in genome and proteins. In 2020

22nd International Conference on Transparent Optical Networks (ICTON). IEEE,

July 2020.

[54] Rushi Patel, Pierre-Francois Wolfe, Robert Munafo, Mayank Varia, and Martin

Herbordt. Arithmetic and boolean secret sharing MPC on FPGAs in the data

center. In 2020 IEEE High Performance Extreme Computing Conference (HPEC).

IEEE, September 2020.

[55] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical

Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[56] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986). IEEE, October 1986.

[57] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the

twentieth annual ACM symposium on Theory of computing - STOC ’88. ACM Press,

1988.

[58] Yan-Cheng Chang. Single database private information retrieval with logarithmic

communication. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, ed-

itors, Information Security and Privacy, pages 50–61, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

152

[59] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n

ot extension with application to private set intersection. In Helena Handschuh,

editor, Topics in Cryptology – CT-RSA 2017, pages 381–396, Cham, 2017. Springer

International Publishing.

[60] Bo Bi, Darong Huang, Bo Mi, Zhenping Deng, and Hongyang Pan. Efficient LBS

security-preserving based on NTRU oblivious transfer. Wireless Personal Commu-

nications, 108(4):2663–2674, May 2019.

[61] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and

mechanism design. In Proceedings of the 1st ACM Conference on Electronic Com-

merce, EC ’99, page 129–139, New York, NY, USA, 1999. Association for Computing

Machinery.

[62] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure

two-party computation is practical. In Advances in Cryptology – ASIACRYPT 2009,

pages 250–267. Springer Berlin Heidelberg, 2009.

[63] Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round two-

party computation. In Lecture Notes in Computer Science, pages 136–155. Springer

Berlin Heidelberg, 2005.

[64] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In

Advances in Cryptology - EUROCRYPT 2015, pages 220–250. Springer Berlin Hei-

delberg, 2015.

[65] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic cir-

cuits. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,

pages 120–129, 2011.

[66] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David and goliath

oblivious affine function evaluation - asymptotically optimal building blocks for

universally composable two-party computation from a single untrusted stateful

tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135, 2012.

https://ia.cr/2012/135.

[67] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious

linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas

Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 629–659, Cham,

2017. Springer International Publishing.

153

https://ia.cr/2012/135

[68] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto

Trifiletti. Tinyole: Efficient actively secure two-party computation from oblivious

linear function evaluation. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17, page 2263–2276, New York,

NY, USA, 2017. Association for Computing Machinery.

[69] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation

with no honest majority. In Omer Reingold, editor, Theory of Cryptography, pages

294–314, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[70] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior Zichron.

Secure arithmetic computation with constant computational overhead. In Jonathan

Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages

223–254, Cham, 2017. Springer International Publishing.

[71] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector

OLE. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security. ACM, January 2018.

[72] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkita-

subramaniam. Leviosa: Lightweight secure arithmetic computation. In Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’19, page 327–344, New York, NY, USA, 2019. Association for Computing

Machinery.

[73] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu,

Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure com-

putation. In Advances in Cryptology – CRYPTO 2019: 39th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,

Part III, page 462–488, Berlin, Heidelberg, 2019. Springer-Verlag.

[74] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure

private set intersection. In Yuval Ishai and Vincent Rijmen, editors, Advances in

Cryptology – EUROCRYPT 2019, pages 154–185, Cham, 2019. Springer Interna-

tional Publishing.

[75] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction to

secure multi-party computation. Foundations and Trends® in Privacy and Security,

2(2-3):70–246, 2018.

[76] Dominique Unruh. Lecture notes in quantum cryptography, November 2017.

154

[77] Charles Ci Wen Lim, Christopher Portmann, Marco Tomamichel, Renato Renner,

and Nicolas Gisin. Device-independent quantum key distribution with local bell

test. Physical Review X, 3(3), July 2013.

[78] Claude Elwood Shannon. A mathematical theory of communication. The Bell

System Technical Journal, 27:379–423, 1948.

[79] Venkatesan Guruswami. Lecture notes in introduction to coding theory, January

2010.

[80] Renato Renner. Security of quantum key distribution, 2006.

[81] Frederic Dupuis, Omar Fawzi, and Stephanie Wehner. Entanglement sampling and

applications. IEEE Transactions on Information Theory, 61(2):1093–1112, February

2015.

[82] Martin Müller-Lennert, Frédéric Dupuis, Oleg Szehr, Serge Fehr, and Marco

Tomamichel. On quantum rényi entropies: A new generalization and some proper-

ties. Journal of Mathematical Physics, 54(12):122203, 2013.

[83] Marco Tomamichel. Quantum Information Processing with Finite Resources.

Springer International Publishing, 2016.

[84] Shai Halevi and Hugo Krawczyk. MMH: Software message authentication in the

Gbit/second rates. In Fast Software Encryption, pages 172–189. Springer Berlin

Heidelberg, 1997.

[85] Marco Tomamichel, Christian Schaffner, Adam Smith, and Renato Renner. Left-

over hashing against quantum side information. IEEE Transactions on Information

Theory, 57(8):5524–5535, August 2011.

[86] Ran Canetti. Universally composable security. Journal of the ACM, 67(5):1–94,

October 2020.

[87] Dominique Unruh. Simulatable security for quantum protocols. arXiv, 0409125,

2004.

[88] Michael Ben-Or and Dominic Mayers. General security definition and composability

for quantum and classical protocols. arXiv, 0409062, 2004.

[89] Dominique Unruh. Universally composable quantum multi-party computation. In

Advances in Cryptology – EUROCRYPT 2010, pages 486–505, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

155

[90] Serge Fehr and Christian Schaffner. Composing quantum protocols in a classical

environment. In Omer Reingold, editor, Theory of Cryptography, pages 350–367,

Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[91] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe

Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 19–40, Berlin,

Heidelberg, 2001. Springer Berlin Heidelberg.

[92] Bruno Costa, Pedro Branco, Manuel Goulão, Mariano Lemus, and Paulo Mateus.

Randomized oblivious transfer for secure multiparty computation in the quantum

setting. Entropy, 23(8):1001, July 2021.

[93] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for

signing contracts. Commun. ACM, 28(6):637–647, June 1985.

[94] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer.

In Proceedings of the 4th International Conference on Progress in Cryptology –

LATINCRYPT 2015 - Volume 9230, page 40–58, Berlin, Heidelberg, 2015. Springer-

Verlag.

[95] Gilles Brassard and Claude Crépeau. 25 years of quantum cryptography. ACM

SIGACT News, 27(3):13–24, September 1996.

[96] G. Brassard. Brief history of quantum cryptography: a personal perspective.

In IEEE Information Theory Workshop on Theory and Practice in Information-

Theoretic Security. IEEE, 2005.

[97] Jörn Müller-Quade. Quantum cryptography beyond key exchange. Informatik -

Forschung und Entwicklung, 21(1-2):39–54, September 2006.

[98] Serge Fehr. Quantum cryptography. Foundations of Physics, 40(5):494–531, Jan-

uary 2010.

[99] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,

D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul

Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden.

Advances in quantum cryptography. Advances in Optics and Photonics, 12(4):1012,

December 2020.

[100] Christopher Portmann and Renato Renner. Security in quantum cryptography,

2021.

156

[101] Shihai Sun and Anqi Huang. A review of security evaluation of practical quantum

key distribution system. Entropy, 24(2):260, February 2022.

[102] Louis Salvail. The Search for the Holy Grail in Quantum Cryptography, pages 183–

216. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[103] Andrew Chi-Chih Yao. Security of quantum protocols against coherent measure-

ments. In Proceedings of the twenty-seventh annual ACM symposium on Theory of

computing - STOC ’95. ACM Press, 1995.

[104] Dominic Mayers. The trouble with quantum bit commitment, 1996.

[105] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys-

ical Review Letters, 78(17):3410–3413, April 1997.

[106] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.

Physical Review Letters, 78(17):3414–3417, April 1997.

[107] Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Review A,

56(2):1154–1162, August 1997.

[108] Roger Colbeck. Impossibility of secure two-party classical computation. Physical

Review A, 76(6), December 2007.

[109] Harry Buhrman, Matthias Christandl, and Christian Schaffner. Complete insecurity

of quantum protocols for classical two-party computation. Physical Review Letters,

109(16), October 2012.

[110] Louis Salvail, Christian Schaffner, and Miroslava Sotáková. Quantifying the leakage

of quantum protocols for classical two-party cryptography. International Journal of

Quantum Information, 13(04):1450041, December 2014.

[111] Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and Vassilis Zikas. Fea-

sibility and completeness of cryptographic tasks in the quantum world. In Amit

Sahai, editor, Theory of Cryptography, pages 281–296, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[112] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. A brief review

on the impossibility of quantum bit commitment, 1997.

[113] Horace P. Yuen. Unconditionally secure quantum bit commitment is possible, 2000.

[114] Horace P. Yuen. Quantum bit commitment and unconditional security, 2002.

157

[115] Horace P. Yuen. How to build unconditionally secure quantum bit commitment

protocols, 2003.

[116] Chi-Yee Cheung. Quantum bit commitment can be unconditionally secure, 2001.

[117] Jeffrey Bub. The quantum bit commitment theorem. Foundations of Physics,

31(5):735–756, 2001.

[118] Chi-Yee Cheung. Secret parameters in quantum bit commitment, 2005.

[119] CHI-YEE CHEUNG. Quantum bit commitment with secret parameters. Interna-

tional Journal of Modern Physics B, 21(23n24):4271–4274, September 2007.

[120] Giacomo Mauro D’Ariano, Dennis Kretschmann, Dirk Schlingemann, and Rein-

hard F. Werner. Reexamination of quantum bit commitment: The possible and the

impossible. Physical Review A, 76(3), September 2007.

[121] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Probabilistic

theories with purification. Physical Review A, 81(6), June 2010.

[122] Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, Dirk Schlingemann,

and Reinhard Werner. A short impossibility proof of quantum bit commitment.

Physics Letters A, 377(15):1076–1087, June 2013.

[123] Guang Ping He. Comment on ”a short impossibility proof of quantum bit commit-

ment”, 2013.

[124] Katriel Cohn-Gordon. Commitment algorithms. Master’s thesis, University of Ox-

ford, Oxford, UK, 2012.

[125] Xin Sun, Feifei He, and Quanlong Wang. Impossibility of quantum bit commitment,

a categorical perspective. Axioms, 9(1):28, March 2020.

[126] Anne Broadbent and Martti Karvonen. Categorical composable cryptography. In

Patricia Bouyer and Lutz Schröder, editors, Foundations of Software Science and

Computation Structures, pages 161–183, Cham, 2022. Springer International Pub-

lishing.

[127] Scott Aaronson. Quantum lower bound for the collision problem. In Proceedings

of the thiry-fourth annual ACM symposium on Theory of computing - STOC ’02.

ACM Press, 2002.

158

[128] I.B. Damgard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded

quantum-storage model. In 46th Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS’05). IEEE, 2005.

[129] Stephanie Wehner, Christian Schaffner, and Barbara M. Terhal. Cryptography from

noisy storage. Physical Review Letters, 100(22), June 2008.

[130] Robert Konig, Stephanie Wehner, and Jürg Wullschleger. Unconditional secu-

rity from noisy quantum storage. IEEE Transactions on Information Theory,

58(3):1962–1984, March 2012.

[131] Yi-Kai Liu. Building one-time memories from isolated qubits. In Proceedings of the

5th conference on Innovations in theoretical computer science. ACM, January 2014.

[132] Damián Pitalúa-Garćıa. Spacetime-constrained oblivious transfer. Physical Review

A, 93(6), June 2016.

[133] Adrian Kent. Location-oblivious data transfer with flying entangled qudits. Physical

Review A, 84(1), July 2011.

[134] Dominique Unruh. Everlasting multi-party computation. Journal of Cryptology,

31(4):965–1011, March 2018.

[135] Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1):78–88, January

1983.

[136] Charles H. Bennett, Gilles Brassard, Seth Breidbart, and Stephen Wiesner. Quan-

tum cryptography, or unforgeable subway tokens. In Advances in Cryptology, pages

267–275. Springer US, 1983.

[137] Charles H. Bennett, Gilles Brassard, and Seth Breidbart. Quantum cryptography II:

How to re-use a one-time pad safely even if p=NP. Natural Computing, 13(4):453–

458, October 2014.

[138] Markus Jakobi, Christoph Simon, Nicolas Gisin, Jean-Daniel Bancal, Cyril Bran-

ciard, Nino Walenta, and Hugo Zbinden. Practical private database queries based

on a quantum-key-distribution protocol. Physical Review A, 83(2), February 2011.

[139] Mariano Lemus, Mariana F. Ramos, Preeti Yadav, Nuno A. Silva, Nelson J. Muga,

André Souto, Nikola Paunković, Paulo Mateus, and Armando N. Pinto. Genera-

tion and distribution of quantum oblivious keys for secure multiparty computation.

Applied Sciences, 10(12):4080, June 2020.

159

[140] C. Crepeau and J. Kilian. Achieving oblivious transfer using weakened security

assumptions. In [Proceedings 1988] 29th Annual Symposium on Foundations of

Computer Science. IEEE, 1988.

[141] D. Mayers and L. Salvail. Quantum oblivious transfer is secure against all individual

measurements. In Proceedings Workshop on Physics and Computation. PhysComp

’94. IEEE Comput. Soc. Press, 1994.

[142] Dominic Mayers. Quantum key distribution and string oblivious transfer in noisy

channels. In Advances in Cryptology — CRYPTO ’96, pages 343–357. Springer

Berlin Heidelberg, 1996.

[143] Claude Crépeau, Paul Dumais, Dominic Mayers, and Louis Salvail. Computational

collapse of quantum state with application to oblivious transfer. In Moni Naor,

editor, Theory of Cryptography, pages 374–393, Berlin, Heidelberg, 2004. Springer

Berlin Heidelberg.

[144] Niek J. Bouman and Serge Fehr. Sampling in a quantum population, and applica-

tions. In Advances in Cryptology – CRYPTO 2010, pages 724–741. Springer Berlin

Heidelberg, 2010.

[145] Mario Berta, Matthias Christandl, Roger Colbeck, Joseph M. Renes, and Renato

Renner. The uncertainty principle in the presence of quantum memory. Nature

Physics, 6(9):659–662, July 2010.

[146] Marco Tomamichel and Renato Renner. Uncertainty relation for smooth entropies.

Physical Review Letters, 106(11), March 2011.

[147] Ivan B. Damg̊ard, Serge Fehr, Renato Renner, Louis Salvail, and Christian

Schaffner. A tight high-order entropic quantum uncertainty relation with appli-

cations. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages

360–378, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[148] Renato Renner and Robert König. Universally composable privacy amplification

against quantum adversaries. In Theory of Cryptography, pages 407–425. Springer

Berlin Heidelberg, 2005.

[149] Renato Renner. Security of quantum key distribution, 2005.

[150] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,

4(2):151–158, January 1991.

160

[151] Johan HÅstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-

dorandom generator from any one-way function. SIAM Journal on Computing,

28(4):1364–1396, January 1999.

[152] Iftach Haitner and Omer Reingold. Statistically-hiding commitment from any one-

way function. In Proceedings of the thirty-ninth annual ACM symposium on Theory

of computing - STOC ’07. ACM Press, 2007.

[153] Dominique Unruh. Concurrent composition in the bounded quantum storage model.

In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,

pages 467–486, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[154] Jörn Müller-Quade and Renato Renner. Composability in quantum cryptography.

New Journal of Physics, 11(8):085006, August 2009.

[155] Michael Ben-Or and Dominic Mayers. General security definition and composability

for quantum & classical protocols, 2004.

[156] Dominique Unruh. Simulatable security for quantum protocols, 2004.

[157] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle,

editor, The Second Symposium on Innovations in Computer Science, ICS 2011,

pages 1–21. Tsinghua University Press, 1 2011.

[158] Prabha Mandayam and Stephanie Wehner. Achieving the physical limits of the

bounded-storage model. Physical Review A, 83(2), February 2011.

[159] Stephanie Wehner and Jürg Wullschleger. Composable security in the bounded-

quantum-storage model. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Au-

tomata, Languages and Programming, pages 604–615, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg.

[160] Christian Schaffner. Simple protocols for oblivious transfer and secure identification

in the noisy-quantum-storage model. Physical Review A, 82(3), September 2010.

[161] C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-bounded

receiver. In Proceedings 39th Annual Symposium on Foundations of Computer Sci-

ence (Cat. No.98CB36280). IEEE Comput. Soc, 1998.

[162] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round

oblivious transfer in the bounded storage model. In Moni Naor, editor, Theory of

Cryptography, pages 446–472, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

161

[163] George. Savvides. Interactive hashing and reductions between Oblivious Transfer

variants. PhD thesis, McGill University, School of Computer Science, 2007.

[164] Christian Schaffner, Barbara M. Terhal, and Stephanie Wehner. Robust cryptog-

raphy in the noisy-quantum-storage model. Quantum Inf. Comput., 9(11&12):963–

996, 2009.

[165] Hoi-Kwong Lo, Marcos Curty, and Kiyoshi Tamaki. Secure quantum key distribu-

tion. Nature Photonics, 8(8):595–604, July 2014.

[166] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,

D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul

Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden.

Advances in quantum cryptography. Advances in Optics and Photonics, 12(4):1012,

December 2020.

[167] Vadim Makarov and Dag R. Hjelme. Faked states attack on quantum cryptosystems.

Journal of Modern Optics, 52(5):691–705, March 2005.

[168] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy. Trojan-horse attacks on

quantum-key-distribution systems. Physical Review A, 73(2), February 2006.

[169] Nitin Jain, Birgit Stiller, Imran Khan, Dominique Elser, Christoph Marquardt, and

Gerd Leuchs. Attacks on practical quantum key distribution systems (and how to

prevent them). Contemporary Physics, 57(3):366–387, March 2016.

[170] Nitin Jain, Birgit Stiller, Imran Khan, Dominique Elser, Christoph Marquardt, and

Gerd Leuchs. Attacks on practical quantum key distribution systems (and how to

prevent them). Contemporary Physics, 57(3):366–387, March 2016.

[171] Dominic Mayers and Andrew Chi-Chih Yao. Self testing quantum apparatus. Quan-

tum Inf. Comput., 4(4):273–286, 2004.

[172] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Physical Review

Letters, 67(6):661–663, August 1991.

[173] Jedrzej Kaniewski and Stephanie Wehner. Device-independent two-party cryptog-

raphy secure against sequential attacks. New Journal of Physics, 18(5):055004, May

2016.

[174] Jérémy Ribeiro, Le Phuc Thinh, Jedrzej Kaniewski, Jonas Helsen, and Stephanie

Wehner. Device independence for two-party cryptography and position verification

with memoryless devices. Physical Review A, 97(6), June 2018.

162

[175] Antonio Aćın, Nicolas Gisin, and Lluis Masanes. From bell’s theorem to secure

quantum key distribution. Physical Review Letters, 97(12), September 2006.

[176] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Pro-

posed experiment to test local hidden-variable theories. Physical Review Letters,

23(15):880–884, October 1969.

[177] Anne Broadbent and Peter Yuen. Device-independent oblivious transfer from the

bounded-quantum-storage-model and computational assumptions, 2021.

[178] Tony Metger, Yfke Dulek, Andrea Coladangelo, and Rotem Arnon-Friedman.

Device-independent quantum key distribution from computational assumptions.

New Journal of Physics, 23(12):123021, December 2021.

[179] Tony Metger and Thomas Vidick. Self-testing of a single quantum device under

computational assumptions. Quantum, 5:544, September 2021.

[180] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Paper

2015/939, 2015. https://eprint.iacr.org/2015/939.

[181] Jeremy Ribeiro and Stephanie Wehner. On bit commitment and oblivious transfer

in measurement-device independent settings, 2020.

[182] Hoi-Kwong Lo, Marcos Curty, and Bing Qi. Measurement-device-independent quan-

tum key distribution. Physical Review Letters, 108(13), March 2012.

[183] G Murta, S B van Dam, J Ribeiro, R Hanson, and S Wehner. Towards a realization

of device-independent quantum key distribution. Quantum Science and Technology,

4(3):035011, July 2019.

[184] Shihan Sajeed, Igor Radchenko, Sarah Kaiser, Jean-Philippe Bourgoin, Anna

Pappa, Laurent Monat, Matthieu Legré, and Vadim Makarov. Attacks exploit-

ing deviation of mean photon number in quantum key distribution and coin tossing.

Physical Review A, 91(3), March 2015.

[185] Zishuai Zhou, Qisheng Guang, Chaohui Gao, Dong Jiang, and Lijun Chen.

Measurement-device-independent two-party cryptography with error estimation.

Sensors, 20(21):6351, November 2020.

[186] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over

gf(p) and its cryptographic significance (corresp.). IEEE Transactions on Informa-

tion Theory, 24(1):106–110, 1978.

163

https://eprint.iacr.org/2015/939

[187] D. Shanks. Class number, a theory of factorization and genera. In Proc. Symp.

Pure Math., Providence, R.I.: American Mathematical Society, 20:415–440, 1971.

[188] John M. Pollard. Monte Carlo methods for index computation mod p. Mathematics

of Computation, 32:918–924, 1978.

[189] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew

Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé,

Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin,

and Paul Zimmermann. Imperfect forward secrecy: How diffie-hellman fails in

practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, pages 5–17, New York, NY, USA, 2015. Asso-

ciation for Computing Machinery.

[190] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography. Nature,

549(7671):188–194, 2017.

[191] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 2001.

[192] Shay Gueron. Efficient software implementations of modular exponentiation. IACR

Cryptology ePrint Archive, 2011:239, 01 2011.

[193] Donald Beaver. Correlated pseudorandomness and the complexity of private com-

putations. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory

of Computing, STOC ’96, pages 479–488, New York, NY, USA, 1996. Association

for Computing Machinery.

[194] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious

transfers efficiently. In Dan Boneh, editor, Advances in Cryptology - CRYPTO

2003, pages 145–161, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[195] Jesper Nielsen. Extending oblivious transfers efficiently - how to get robustness

almost for free. IACR Cryptology ePrint Archive, 2007:215, 01 2007.

[196] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. A new approach to practical active-secure two-party computation. In Pro-

ceedings of the 32nd Annual Cryptology Conference on Advances in Cryptology —

CRYPTO 2012 - Volume 7417, page 681–700, Berlin, Heidelberg, 2012. Springer-

Verlag.

164

[197] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More ef-

ficient oblivious transfer extensions with security for malicious adversaries. In Elis-

abeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT

2015, pages 673–701, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[198] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-

quantum cryptography in tls. In International Conference on Post-Quantum Cryp-

tography, pages 72–91. Springer, 2020.

[199] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim

Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

Crystals-kyber. NIST, Tech. Rep, 2017.

[200] Daniel Mansy and Peter Rindal. Endemic oblivious transfer. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’19, page 309–326, New York, NY, USA, 2019. Association for Computing

Machinery.

[201] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William

Whyte. Choosing ntruencrypt parameters in light of combined lattice reduction

and mitm approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,

and Damien Vergnaud, editors, Applied Cryptography and Network Security, pages

437–455, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[202] Bo Mi, Darong Huang, Shaohua Wan, Libo Mi, and J. Cao. Oblivious transfer

based on ntruencrypt. IEEE Access, 6:35283–35291, 2018.

[203] Bo Mi, Darong Huang, Shaohua Wan, Yu Hu, and Kim-Kwang Raymond Choo.

A post-quantum light weight 1-out-n oblivious transfer protocol. Computers &

Electrical Engineering, 75:90–100, 2019.

[204] Danilo Verhaert, Majid Nateghizad, and Zekeriya Erkin. An efficient privacy-

preserving recommender system for e-healthcare systems. In Proceedings of

the 15th International Joint Conference on e-Business and Telecommunications.

SCITEPRESS - Science and Technology Publications, 2018.

[205] Simone Scardapane, Rosa Altilio, Valentina Ciccarelli, Aurelio Uncini, and Mas-

simo Panella. Privacy-preserving data mining for distributed medical scenarios. In

Multidisciplinary Approaches to Neural Computing, pages 119–128. Springer Inter-

national Publishing, August 2017.

165

[206] Christian Maulany, Majid Nateghizad, Bart Mennink, and Zekeriya Erkin. Privacy-

preserving distributed access control for medical data. In Proceedings of the 15th In-

ternational Joint Conference on e-Business and Telecommunications. SCITEPRESS

- Science and Technology Publications, 2018.

[207] Hiroaki Kikuchi, Xuping Huang, Shigeta Ikuji, and Manami Inoue. Privacy-

preserving hypothesis testing for reduced cancer risk on daily physical activity.

Journal of Medical Systems, 42(5), April 2018.

[208] Ahmed M. Tawfik, Sahar F. Sabbeh, and Tarek EL-Shishtawy. Privacy-preserving

secure multiparty computation on electronic medical records for star exchange topol-

ogy. Arabian Journal for Science and Engineering, 43(12):7747–7756, March 2018.

[209] Shuang Wang, Xiaoqian Jiang, Haixu Tang, Xiaofeng Wang, Diyue Bu, Knox Carey,

Stephanie OM Dyke, Dov Fox, Chao Jiang, Kristin Lauter, Bradley Malin, Heidi

Sofia, Amalio Telenti, Lei Wang, Wenhao Wang, and Lucila Ohno-Machado. A

community effort to protect genomic data sharing, collaboration and outsourcing.

npj Genomic Medicine, 2(1), October 2017.

[210] Abukari Mohammed Yakubu and Yi-Ping Phoebe Chen. Ensuring privacy and

security of genomic data and functionalities. Briefings in Bioinformatics, 21(2):511–

526, February 2019.

[211] Muhammad Naveed, Erman Ayday, Ellen W. Clayton, Jacques Fellay, Carl A.

Gunter, Jean-Pierre Hubaux, Bradley A. Malin, and Xiaofeng Wang. Privacy in

the genomic era. ACM Computing Surveys, 48(1):1–44, September 2015.

[212] Philip Chan, Itzel Lucio-Martinez, Xiaofan Mo, Christoph Simon, and Wolfgang

Tittel. Performing private database queries in a real-world environment using a

quantum protocol. Scientific Reports, 4(1), June 2014.

[213] Tomohiro Ito, Hayato Koizumi, Nobumitsu Suzuki, Izumi Kakesu, Kento Iwakawa,

Atsushi Uchida, Takeshi Koshiba, Jun Muramatsu, Kazuyuki Yoshimura, Masanobu

Inubushi, and Peter Davis. Physical implementation of oblivious transfer using

optical correlated randomness. Scientific Reports, 7(1), August 2017.

[214] libscapi. https://github.com/cryptobiu/libscapi/tree/master, 2021.

[215] Deborah A. McLennan. How to Read a Phylogenetic Tree. Evolution: Education

and Outreach, 3(4):506–519, 2010.

[216] Ziheng Yang. Computational molecular evolution. Oxford University Press, 2006.

166

https://github.com/cryptobiu/libscapi/tree/master

[217] J. Felsenstein. Inferring phylogenies. Sinauer Associates, 2003.

[218] J. Felsenstein. Phylip - phylogeny inference package (version 3.2). Cladistics, 5:164–

166, 1989.

[219] Thomas Hughes Jukes and Charles R Cantor. Mammalian protein metabolism.

Academic Press, New York, pages 21–132, 1969.

[220] Motoo Kimura. A simple method for estimating evolutionary rates of base substi-

tutions through comparative studies of nucleotide sequences. Journal of molecular

evolution, 16(2):111–120, 1980.

[221] J Felsenstein and G A Churchill. A Hidden Markov Model approach to variation

among sites in rate of evolution. Molecular Biology and Evolution, 13(1):93–104, 01

1996.

[222] P J Lockhart, M A Steel, M D Hendy, and D Penny. Recovering evolutionary

trees under a more realistic model of sequence evolution. Molecular Biology and

Evolution, 11(4):605–612, 07 1994.

[223] Philippe Lemey, Marco Salemi, and Anne-Mieke Vandamme, editors. The Phyloge-

netic Handbook. Cambridge University Press, 2009.

[224] Yehuda Lindell. How to simulate it – a tutorial on the simulation proof technique. In

Tutorials on the Foundations of Cryptography, pages 277–346. Springer International

Publishing, 2017.

[225] Oded Goldreich. Secure multi-party computation, 1998.

[226] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes

from collision-free hashing. In Proceedings of the 16th Annual International Cryp-

tology Conference on Advances in Cryptology, CRYPTO ’96, page 201–215, Berlin,

Heidelberg, 1996. Springer-Verlag.

[227] Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness

problems. In The 43rd Annual IEEE Symposium on Foundations of Computer

Science, 2002. Proceedings., pages 513–519, 2002.

[228] Divesh Aggarwal, Gavin K. Brennen, Troy Lee, Miklos Santha, and Marco

Tomamichel. Quantum attacks on Bitcoin, and how to protect against them. arXiv

e-prints, page arXiv:1710.10377, October 2017.

167

[229] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party

computation using garbled circuits. In Proceedings of the 20th USENIX Conference

on Security, SEC’11, page 35, USA, 2011. USENIX Association.

[230] J Hastad and A Shamir. The cryptographic security of truncated linearly related

variables. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of

Computing, STOC ’85, pages 356–362, New York, NY, USA, 1985. Association for

Computing Machinery.

[231] Hugo Krawczyk. How to predict congruential generators. Journal of Algorithms,

13(4):527 – 545, 1992.

[232] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences

of pseudo-random bits. SIAM J. Comput., 13(4):850–864, November 1984.

[233] L Blum, M Blum, and M Shub. A simple unpredictable pseudo random number

generator. SIAM J. Comput., 15(2):364–383, May 1986.

[234] Ammar Alkassar, Thomas Nicolay, and Markus Rohe. Obtaining true-random bi-

nary numbers from a weak radioactive source. In Computational Science and Its

Applications – ICCSA 2005, pages 634–646. Springer Berlin Heidelberg, 2005.

[235] William A. Gaviria Rojas, Julian J. McMorrow, Michael L. Geier, Qianying Tang,

Chris H. Kim, Tobin J. Marks, and Mark C. Hersam. Solution-processed carbon

nanotube true random number generator. Nano Letters, 17(8):4976–4981, July 2017.

[236] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random num-

ber generators. Reviews of Modern Physics, 89(1), February 2017.

[237] Mauricio J. Ferreira, Nuno A. Silva, Armando N. Pinto, and Nelson J. Muga. Ho-

modyne noise characterization in quantum random number generators. In 2021

Telecoms Conference (ConfTELE). IEEE, February 2021.

[238] Margarida Almeida, Daniel Pereira, Margarida Facão, Armando N. Pinto, and

Nuno A. Silva. Impact of imperfect homodyne detection on measurements of vac-

uum states shot noise. Optical and Quantum Electronics, 52(11), November 2020.

[239] Nuno A. Silva, Margarida Almeida, Daniel Pereira, Margarida Facao, Nelson J.

Muga, and Armando N. Pinto. Role of device imperfections on the practical per-

formance of continuous-variable quantum key distribution systems. In 2019 21st

International Conference on Transparent Optical Networks (ICTON). IEEE, July

2019.

168

[240] Margarida Almeida, Margarida Facao, Nelson J. Muga, Armando N. Pinto, and

Nuno A. Silva. Secret key extraction in direct reconciliation CV-QKD systems. In

2021 Telecoms Conference (ConfTELE). IEEE, February 2021.

[241] Marco Tomamichel and Anthony Leverrier. A largely self-contained and complete

security proof for quantum key distribution. Quantum, 1:14, July 2017.

[242] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Hel-

mut Veith. CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations.

In Albert Cohen, editor, Compiler Construction - 23rd International Conference,

CC 2014, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, volume

8409 of Lecture Notes in Computer Science, pages 244–249. Springer, 2014.

[243] Niklas Büscher, Martin Franz, Andreas Holzer, Helmut Veith, and Stefan Katzen-

beisser. On compiling boolean circuits optimized for secure multi-party computa-

tion. Formal Methods in System Design, 51(2):308–331, September 2017.

[244] Niklas Buescher, Andreas Holzer, Alina Weber, and Stefan Katzenbeisser. Com-

piling low depth circuits for practical secure computation. In Computer Security –

ESORICS 2016, pages 80–98. Springer International Publishing, 2016.

[245] Mpc-benchmark. https://github.com/cryptobiu/MPC-Benchmark, 2021.

[246] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension

with optimal overhead. In Lecture Notes in Computer Science, pages 724–741.

Springer Berlin Heidelberg, 2015.

[247] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In

Progress in Cryptology – LATINCRYPT 2015, pages 40–58. Springer International

Publishing, 2015.

[248] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Advances in

Cryptology - EUROCRYPT 2006, pages 222–232. Springer Berlin Heidelberg, 2006.

[249] Fabian Furrer, Tobias Gehring, Christian Schaffner, Christoph Pacher, Roman Schn-

abel, and Stephanie Wehner. Continuous-variable protocol for oblivious transfer in

the noisy-storage model. Nature Communications, 9(1), April 2018.

[250] Armando N. Pinto, Laura Ortiz, Manuel Santos, Ana C. Gomes, Juan P. Brito,

Nelson J. Muga, Nuno A. Silva, Paulo Mateus, and Vicente Martin. Quantum

enabled private recognition of composite signals in genome and proteins. In 2020

169

https://github.com/cryptobiu/MPC-Benchmark

22nd International Conference on Transparent Optical Networks (ICTON). IEEE,

July 2020.

[251] Siddarth Koduru Joshi, Djeylan Aktas, Sören Wengerowsky, Martin Lončarić, Se-

bastian Philipp Neumann, Bo Liu, Thomas Scheidl, Guillermo Currás Lorenzo,

Željko Samec, Laurent Kling, Alex Qiu, Mohsen Razavi, Mario Stipčević, John G.

Rarity, and Rupert Ursin. A trusted node–free eight-user metropolitan quantum

communication network. Science Advances, 6(36), September 2020.

[252] Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon. Network oblivious

transfer. In Advances in Cryptology – CRYPTO 2016, pages 366–396. Springer

Berlin Heidelberg, 2016.

[253] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition, 2012.

[254] Jack E. Volder. The cordic trigonometric computing technique. IRE Transactions

on Electronic Computers, EC-8(3):330–334, 1959.

[255] Ebrahim M. Songhori, M. Sadegh Riazi, Siam U. Hussain, Ahmad-Reza Sadeghi,

and Farinaz Koushanfar. ARM2gc. In Proceedings of the 56th Annual Design

Automation Conference 2019. ACM, June 2019.

[256] Ivan Damg̊ard, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian

Schaffner. Improving the security of quantum protocols via commit-and-open. In

Advances in Cryptology - CRYPTO 2009, pages 408–427. Springer Berlin Heidel-

berg, 2009.

[257] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party

computation. Journal of Cryptology, 22(2):161–188, December 2008.

[258] Zhiliang Yuan, Alan Plews, Ririka Takahashi, Kazuaki Doi, Winci Tam, Andrew

Sharpe, Alexander Dixon, Evan Lavelle, James Dynes, Akira Murakami, Mamko

Kujiraoka, Marco Lucamarini, Yoshimichi Tanizawa, Hideaki Sato, and Andrew J.

Shields. 10-mb/s quantum key distribution. J. Lightwave Technol., 36(16):3427–

3433, Aug 2018.

[259] Id quantique website. https://www.idquantique.com/

random-number-generation/products/quantis-qrng-pcie/, 2021.

[260] Gisaid database. https://www.gisaid.org/, 2021.

[261] Fábio Madeira, Young Mi Park, Joon Lee, Nicola Buso, Tamer Gur, Nandana Mad-

husoodanan, Prasad Basutkar, Adrian R N Tivey, Simon C Potter, Robert D Finn,

170

https://www.idquantique.com/random-number-generation/products/quantis-qrng-pcie/
https://www.idquantique.com/random-number-generation/products/quantis-qrng-pcie/
https://www.gisaid.org/

and Rodrigo Lopez. The embl-ebi search and sequence analysis tools apis in 2019.

Nucleic acids research, 47(W1):W636–W641, July 2019.

[262] Oded Goldreich. Foundations of Cryptography. Cambridge University Press, May

2004.

[263] Ran Canetti. Security and composition of multiparty cryptographic protocols. Jour-

nal of Cryptology, 13(1):143–202, 2000.

[264] Claude Crépeau. Quantum oblivious transfer. Journal of Modern Optics,

41(12):2445–2454, 1994.

[265] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM Journal on

Computing, 35(5):1254–1281, January 2006.

[266] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In

Proceedings of the thirty-first annual ACM symposium on Theory of computing -

STOC '99. ACM Press, 1999.

[267] Lindell and Pinkas. Privacy preserving data mining. Journal of Cryptology,

15(3):177–206, June 2002.

[268] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from

algebraic prfs. J. Cryptol., 31(2):537–586, apr 2018.

[269] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology —

CRYPTO’ 99, pages 116–129. Springer Berlin Heidelberg, 1999.

[270] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas Gisin. Secu-

rity of quantum key distribution using d -level systems. Phys. Rev. Lett., 88:127902,

Mar 2002.

[271] Antonio Acin, Nicolas Gisin, and Valerio Scarani. Security bounds in quantum

cryptography using d-level systems. Quantum Info. Comput., 3(6):563–580, nov

2003.

[272] Irfan Ali-Khan, Curtis J. Broadbent, and John C. Howell. Large-alphabet quantum

key distribution using energy-time entangled bipartite states. Phys. Rev. Lett.,

98:060503, Feb 2007.

[273] Lana Sheridan and Valerio Scarani. Security proof for quantum key distribution

using qudit systems. Phys. Rev. A, 82:030301, Sep 2010.

171

[274] Alicia Sit, Frédéric Bouchard, Robert Fickler, Jérémie Gagnon-Bischoff, Hugo

Larocque, Khabat Heshami, Dominique Elser, Christian Peuntinger, Kevin

Günthner, Bettina Heim, Christoph Marquardt, Gerd Leuchs, Robert W. Boyd, and

Ebrahim Karimi. High-dimensional intracity quantum cryptography with structured

photons. Optica, 4(9):1006–1010, 2017.

[275] Frédéric Bouchard, Khabat Heshami, Duncan England, Robert Fickler, Robert W.

Boyd, Berthold-Georg Englert, Luis L. Sánchez-Soto, and Ebrahim Karimi. Exper-

imental investigation of high-dimensional quantum key distribution protocols with

twisted photons. Quantum, 2:111, 2018.

[276] Ivan Damg̊ard, Helene Haagh, Michael Nielsen, and Claudio Orlandi. Commodity-

based 2pc for arithmetic circuits. In Cryptography and Coding, pages 154–177.

Springer International Publishing, 2019.

[277] Dimiter Ostrev. Qkd parameter estimation by two-universal hashing leads to faster

convergence to the asymptotic rate. arxiv, 2109.06709, 2021.

[278] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143–154, 1979.

[279] Carlos Mochon. Large family of quantum weak coin-flipping protocols. Phys. Rev.

A, 72:022341, Aug 2005.

[280] G. Molina-Terriza, A. Vaziri, R. Ursin, and A. Zeilinger. Experimental quantum

coin tossing. Phys. Rev. Lett., 94:040501, Jan 2005.

[281] Guido Berĺın, Gilles Brassard, Félix Bussières, and Nicolas Godbout. Fair loss-

tolerant quantum coin flipping. Phys. Rev. A, 80:062321, Dec 2009.

[282] Guido Berĺın, Gilles Brassard, Félix Bussières, Nicolas Godbout, Joshua A. Slater,

and Wolfgang Tittel. Experimental loss-tolerant quantum coin flipping. Nature

Communications, 2(1):561, 2011.

[283] Ariel Danan and Lev Vaidman. Practical quantum bit commitment protocol. Quan-

tum Information Processing, 11(3):769–775, 2012.

[284] S. Arash Sheikholeslam and T. Aaron Gulliver. A practical quantum bit commit-

ment protocol. Results in Physics, 2:97–99, 2012.

[285] Nelly Huei Ying Ng, Siddarth K. Joshi, Chia Chen Ming, Christian Kurtsiefer,

and Stephanie Wehner. Experimental implementation of bit commitment in the

noisy-storage model. Nature Communications, 3(1):1326, 2012.

172

[286] I. Kerenidis and A. Chailloux. Optimal bounds for quantum bit commitment. In

2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages

354–362, Los Alamitos, CA, USA, oct 2011. IEEE Computer Society.

[287] Anna Pappa, Paul Jouguet, Thomas Lawson, André Chailloux, Matthieu Legré,

Patrick Trinkler, Iordanis Kerenidis, and Eleni Diamanti. Experimental plug and

play quantum coin flipping. Nature Communications, 5(1):3717, 2014.

[288] Ricardo Loura, Álvaro J. Almeida, Paulo S. André, Armando N. Pinto, Paulo Ma-

teus, and Nikola Paunković. Noise and measurement errors in a practical two-state

quantum bit commitment protocol. Phys. Rev. A, 89:052336, May 2014.

[289] Ricardo Loura, D. Arsenović, Nikola Paunković, D. B. Popović, and Slobodan

Prvanović. Security of two-state and four-state practical quantum bit-commitment

protocols. Phys. Rev. A, 94:062335, Dec 2016.

[290] Atul Singh Arora, Jérémie Roland, and Stephan Weis. Quantum weak coin flip-

ping. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2019, page 205–216, New York, NY, USA, 2019. Association for

Computing Machinery.

[291] Mathieu Bozzio, Ulysse Chabaud, Iordanis Kerenidis, and Eleni Diamanti. Quantum

weak coin flipping with a single photon. Phys. Rev. A, 102:022414, Aug 2020.

[292] Yaqi Song and Li Yang. Semi-counterfactual quantum bit commitment protocol.

Scientific Reports, 10(1):6531, 2020.

[293] Atul Singh Arora, Jérémie Roland, and Chrysoula Vlachou. Analytic quantum weak

coin flipping protocols with arbitrarily small bias. In Proceedings of the Thirty-

Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’21, page

919–938. Society for Industrial and Applied Mathematics, 2021.

[294] Bartosz Przydatek and Jürg Wullschleger. Error-tolerant combiners for oblivi-

ous primitives. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Lan-

guages and Programming, pages 461–472, Berlin, Heidelberg, 2008. Springer Berlin

Heidelberg.

[295] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner. Tre-

visan's extractor in the presence of quantum side information. SIAM Journal on

Computing, 41(4):915–940, January 2012.

173

[296] Roy Kasher and Julia Kempe. Two-source extractors secure against quantum ad-

versaries. In Maria Serna, Ronen Shaltiel, Klaus Jansen, and José Rolim, editors,

Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, pages 656–669, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[297] Yao-Hsin Chou, Guo-Jyun Zeng, and Shu-Yu Kuo. One-out-of-two quantum obliv-

ious transfer based on nonorthogonal states. Scientific Reports, 8(1), October 2018.

[298] Ryan Amiri, Robert Stárek, David Reichmuth, Ittoop V. Puthoor, Michal Mičuda,

Jr. Ladislav Mǐsta, Miloslav Dušek, Petros Wallden, and Erika Andersson. Imperfect

1-out-of-2 quantum oblivious transfer: Bounds, a protocol, and its experimental

implementation. PRX Quantum, 2(1), March 2021.

[299] Srijita Kundu, Jamie Sikora, and Ernest Y. Z. Tan. A device-independent protocol

for xor oblivious transfer. Quantum, 6:735, 2022.

[300] André Chailloux, Iordanis Kerenidis, and Jamie Sikora. Lower bounds for quantum

oblivious transfer. Quantum Inf. Comput., 13(1-2):158–177, 2013.

[301] André Chailloux, Gus Gutoski, and Jamie Sikora. Optimal bounds for semi-honest

quantum oblivious transfer. Chic. J. Theor. Comput. Sci., 2016, 2016.

[302] Lara Stroh, Nikola Horová, Robert Stárek, Ittoop V. Puthoor, Michal Mičuda,

Miloslav Dušek, and Erika Andersson. Non-interactive xor quantum oblivious trans-

fer: optimal protocols and their experimental implementations. arXiv, 2209.11300,

2022.

174

	Abstract
	Resumo
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	1 Introduction
	2 Technical overview
	2.1 Mathematical preliminaries
	2.2 Secure multiparty computation
	2.2.1 Garbled circuit approach
	2.2.2 Secret sharing approach

	2.3 Quantum information
	2.3.1 Trace distance
	2.3.2 Entropy
	2.3.3 Two-universal functions

	2.4 Universal composability
	2.5 Conclusion

	3 Quantum oblivious transfer
	3.1 Impossibility results
	3.2 BBCS-based protocols
	3.2.1 BBCS protocol
	3.2.2 BBCS in the FCOM-hybrid model
	3.2.3 BBCS in the limited-quantum-storage model
	3.2.4 Bounded-quantum-storage model
	3.2.5 Noisy-quantum-storage model
	3.2.6 Experimental attacks

	3.3 Conclusion

	4 Classical and quantum oblivious transfer
	4.1 Classical oblivious transfer
	4.1.1 Security issues
	4.1.2 Efficiency issues
	4.1.3 OT extension protocols

	4.2 Oblivious transfer complexity analysis
	4.2.1 Optimization
	4.2.2 Classical OT
	4.2.3 OT extension

	4.3 Conclusion

	5 Private phylogenetic trees
	5.1 Phylogenetic trees
	5.1.1 Evolutionary distances
	5.1.2 Distance-based algorithms

	5.2 Security definition
	5.2.1 Distance matrix functionality

	5.3 Quantum tools
	5.3.1 Quantum oblivious key distribution
	5.3.2 Quantum random number generator
	5.3.3 Quantum key distribution

	5.4 Software tools
	5.4.1 CBMC-GC
	5.4.2 Libscapi
	5.4.3 PHYLIP

	5.5 Secure multiparty computation of phylogenetic trees
	5.5.1 Functionality definition
	5.5.2 Private protocol
	5.5.3 Quantum private protocol

	5.6 Quantum technologies integration
	5.6.1 Quantum oblivious transfer
	5.6.2 Quantum random number generation
	5.6.3 Quantum key distribution
	5.6.4 Quantum network integration

	5.7 System security
	5.7.1 Private computation of distances
	5.7.2 Private computation of phylogenetic trees

	5.8 Complexity analysis
	5.8.1 Protocol complexity analysis
	5.8.2 Use case

	5.9 Performance evaluation
	5.9.1 Setup
	5.9.2 Circuit generation
	5.9.3 System execution time

	5.10 Conclusion

	6 Quantum oblivious linear evaluation
	6.1 Contributions overview
	6.1.1 Organization

	6.2 Mutually unbiased bases
	6.3 Semi-honest QOLE protocol
	6.4 QOLE protocol
	6.4.1 RWOLE phase
	6.4.2 Post-processing phase

	6.5 UC security
	6.6 Protocol generalizations
	6.6.1 QOLE in Galois fields of prime-power dimensions
	6.6.2 Quantum vector OLE

	6.7 Conclusion

	7 Conclusion
	7.1 Future work

	A Jukes-Cantor distance for CBMC-GC
	B Proof of Lemma 14 (Dishonest Bob)
	Bibliography

