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Abstract

Quantum cryptography is a field of study that utilizes the properties of quantum physics
to develop cryptographic primitives that are beyond the reach of classical cryptography.
Its main objective is to improve existing classical implementations and to introduce new
cryptographic methods that can withstand the power of quantum computers. While
much of the research in this field has focused on quantum key distribution (QKD), there
have been important advances in the understanding and development of other two-party
primitives such as quantum oblivious transfer (QOT). QOT protocols, having a similar
structure to QKD protocols, allow for quantum-safe computation. However, the condi-
tions under which QOT is fully quantum-safe are still under intense scrutiny. The thesis
begins by surveying the work done on the concept of oblivious transfer within theoretical
quantum cryptography, highlighting proposed protocols and their security requirements,
discussing impossibility results, and examining quantum security models in which QOT

security can be proven.

The most significant application of oblivious transfer (OT) is in the realm of secure
multiparty computation (SMC). This technology has the potential to revolutionize fields
such as data analysis and computation by enabling multiple parties to compute virtually
any function while maintaining the privacy of their inputs. However, the security and
efficiency of SMC protocols are heavily dependent on the security and efficiency of OT.
To address this, the thesis conducts a detailed comparison of the complexity of quantum
oblivious transfer based on oblivious keys and two of the fastest classical OT protocols.
This comparison provides insight into the potential benefits and limitations of using quan-

tum techniques in SMC.

Building on the theoretical comparison of quantum and classical approaches to oblivi-
ous transfer, the thesis integrates and compares both within an SMC system for genomic
analysis. The proposed system utilizes quantum cryptographic protocols to compute
a phylogenetic tree from a set of private genome sequences. This system significantly
improves the privacy and security of the computation by incorporating three quantum
cryptographic protocols that provide enhanced security against quantum computer at-

tacks. The system adapts several distance-based methods, such as the Unweighted Pair
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Group Method with Arithmetic mean (UPGMA), Neighbour-Joining (NJ), and Fitch-
Margoliash (FM), into a private setting where the sequences owned by each party are not
disclosed to other members. The performance and privacy guarantees of the system are
evaluated theoretically through a complexity analysis and a security proof. Additionally,
the thesis provides an extensive explanation of the implementation details and crypto-
graphic protocols used. The implementation of quantum-assisted secure phylogenetic tree
computation is based on the Libscapi implementation of the Yao protocol, the PHYLIP
library, and simulated keys of two quantum systems: quantum oblivious key distribution
and quantum key distribution. The implementation is benchmarked against a classical-
only solution, and the results indicate that both approaches have similar execution times,
with the only difference being the time overhead taken by the oblivious key management
system of the quantum-assisted approach.

Finally, the thesis presents the first quantum protocol for oblivious linear evaluation.
Oblivious linear evaluation is a generalization of oblivious transfer, where two distrustful
parties, Alice and Bob, obliviously compute a linear function, f(x) = ax + b, without
revealing their inputs to each other. Alice inputs the function coefficients, a and b, and
Bob inputs the function input, . The output, f(x), is only delivered by Bob. This
primitive is essential for arithmetic-based secure multiparty computation protocols from
a structural and security point of view. In the classical setting, it is known that oblivious
linear evaluation can be generated based on oblivious transfer, and quantum counterparts
of these protocols can, in principle, be constructed as straightforward extensions based on
quantum oblivious transfer. However, the thesis presents a novel quantum protocol for
oblivious linear evaluation that does not rely on quantum oblivious transfer. The protocol
is first presented for the semi-honest setting and then extended to the dishonest setting
using a commit-and-open strategy. The protocol uses high-dimensional quantum states
to compute the linear function obliviously, f(x), on Galois fields of prime dimension,
GF(d) = Zg4, or prime-power dimension, GF(d). The protocol utilizes a complete set of
mutually unbiased bases in prime-power dimension Hilbert spaces and their linear behav-
ior upon the Heisenberg-Weyl operators. The protocol is also generalized to achieve vector
oblivious linear evaluation, which increases efficiency by generating several instances of
oblivious linear evaluation. The security of the protocol is proven in the framework of

quantum universal composability.

Key-words: quantum cryptography, quantum oblivious transfer, quantum oblivious

linear evaluation, secure multiparty computation.
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Resumo

A criptografia quantica é o campo da criptografia que explora as propriedades quanticas da
matéria. Geralmente, visa desenvolver primitivas fora do alcance da criptografia classica e
melhorar as implementagoes cléssicas existentes. Embora grande parte do trabalho neste
campo se foque na distribuicdo de chaves quanticas (quantum key distribution, QKD),
também tém existido desenvolvimentos cruciais para a compreensao e desenvolvimento
de outras primitivas criptogréficas, como a transferéncia oblivia quantica (quantum obliv-
ious transfer, QOT). Pode-se mostrar a semelhanca entre a estrutura de aplicagao das
primitivas QKD e QOT. Assim como os protocolos QKD permitem comunicagdo com
seguranca quantica, os protocolos QOT permitem computacao com seguranca quantica.
No entanto, as condigoes sobre as quais o QOT ¢é totalmente seguro tém sido sujeitas
a um intenso estudo. Nesta tese, comecamos por fazer um levantamento do trabalho
desenvolvido em torno do conceito de OT dentro da criptografia quantica tedrica. Aqui
concentramo-nos em alguns protocolos propostos e nos seus requisitos de seguranca. Re-
visitamos os resultados de impossibilidade desta primitiva e discutimos varios modelos

quanticos de seguranca sob os quais é possivel provar a seguranca do QOT.

A aplicagao mais famosa do OT esta no dominio da computagao multipartidaria segura
(secure multiparty computation, SMC). Esta tecnologia tem o potencial de ser disruptiva
nas areas de analise e computacao de dados. Esta permite que varios participantes cal-
culem um certa funcao, preservando a privacidade dos seus dados. No entanto, a maior
parte da seguranca e eficiéncia dos protocolos SMC dependem da seguranca e eficiéncia do
OT. Por esta razao, fazemos uma comparacao detalhada entre a complexidade da QOT

baseada em chaves oblivias e dois dos protocolos OT classicos mais rapidos.

Seguindo a comparacao tedrica entre OT quantico e classico, integramos e compara-
mos ambas as abordagens dentro de um sistema SMC baseado na andlise de sequéncias
genéticas. Em resumo, propomos um sistema SMC auxiliado por protocolos criptograficos
quanticos com o objectivo de computar uma arvore filogenética a partir de um conjunto
de sequéncias genéticas privadas. Este sistema melhora significativamente a privacidade e
a seguranca da computagao gracas a trés protocolos criptograficos quanticos que fornecem

seguranca aprimorada contra ataques de computadores quanticos. Este sistema adapta



véarios métodos baseados em distancia (Unweighted Pair Group Method with Arithmetic
mean, Neighbour-Joining, Fitch-Margoliash) num ambiente privado onde as sequéncias
de cada participante nao sao divulgadas aos demais membros presentes no protocolo.
Avaliamos teoricamente as garantias de desempenho e privacidade do sistema através de
uma analise de complexidade e prova de seguranca, e fornecemos uma extensa explicacao
dos detalhes de implementagao e protocolos criptograficos. Implementamos este sistema
com base na implementacao Libscapi do protocolo de Yao, na biblioteca PHYLIP e em
chaves simuladas de dois sistemas quanticos: distribuicao de chaves oblivias quanticas
e distribuicao de chaves quanticas. Comparamos esta implementacao com uma solucao
somente classica e concluimos que ambas as abordagens apresentam tempos de execucao
semelhantes. A tnica diferenca entre os dois sistemas é a sobrecarga de tempo tomada
pelo sistema de gestao de chaves oblivias da abordagem quantica.

Finalmente, apresentamos o primeiro protocolo quantico de avaliacao linear oblivia
(oblivious linear evaluation, OLE). O OLE é uma generalizagao do OT, em que dois par-
ticipantes calculam de forma oblivia uma fungao linear, f(z) = ax + b. Ou seja, cada
participante fornece os seus dados de forma privada, a fim de calcular o resultado f(z)
que se torna conhecido por apenas um deles. Do ponto de vista estrutural e de seguranca,
o OLE é fundamental para protocolos SMC baseados em circuitos aritméticos. No caso
classico, sabe-se que o OLE pode ser gerado com base no OT, e as contrapartes quanticas
desses protocolos podem, em principio, ser construidas como extensoes directas baseadas
em QOT. Aqui, apresentamos o primeiro, protocolo quantico OLE que nao depende de
QOT. Comecamos apresentando um protocolo semi-honesto e depois estendemo-lo para
o cenario desonesto através de uma estratégia commit-and-open. O nosso protocolo usa
estados quanticos para calcular a funcao linear, f(z), em corpos de Galois de dimensao
prima, GF(d) = Z4, ou dimensao de poténcia prima, GF(d™). Estas construcoes uti-
lizam a existéncia de um conjunto completo de mutually unbiased bases em espacos de
Hilbert de dimensao de poténcia prima e o seu comportamento linear sobre os operadores
de Heisenberg-Weyl. Também generalizamos o nosso protocolo para obter uma versao
vectorial do OLE, onde sao geradas varias instancias de OLE, tornando o protocolo mais
eficiente. Provamos que os protocolos tém seguranga estatica no ambito da composi¢ao

universal quantica.

Palavras-chave: criptografia quantica, transferéncia oblivia quantica, avaliacao linear

oblivia quantica, computacao multipartidaria segura.
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Notation

General

Lyq Set of integers a mod q.

ged(a, b) Greatest common divisor between integers a and b.

Z, Set of integers a € Z, that are coprime with ¢, i.e. ged(a,q) = 1.

7| Size of a set I.

T Complement of set 7.

s <4—¢ [ s is drawn uniformly at random from the set I.

v Subvector of v restricted to the indices ¢ € J.

[m)] The ordered set {1,2,...,m} for m € Z,.

[m, n] The ordered set {m,m +1,...,n — 1,n} for m,n € Z, such that
m < n.

dy(x,y) Hamming distance given by [{i : x; # y;}| for =,y € Z.

ru(z,y) The relative Hamming distance given by dg(x,y)/n.

p(n) Negligible function.

log Natural logarithm.

log,; Logarithm with base d.

E.[f(z)] Expectation of f(z) over random choices of .
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Hmin(X)

Average value of elements in set X.
Amount of information some event A.
Shannon entropy of random variable X.
d-ary entropy function.

Min-entropy of classical random variable X.

Two-universal hash family.

Quantum information

Ha(H3)
(oY)
|9) (9]

P, 0

|Ba,b>

tr(p)

rank(p)

Hilbert space (its dual) of quantum system A.
Scalar product of the vectors |¢) and [¢)).
Projector onto the vector |¢).

Density operators.

Generalised Bell states.

Uniform distribution over X.

Set of normalized vectors on H.

Sets of hermitian operators on H.

Sets of positive-semi definite on H.

The sets density operators on H.

Trace distance between p and o.

Identity operator.

Trace of the hermitian operator p.

Rank of the hermitian operator p.

E,T,C, 00, M CPTP maps.
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Hmin<X’B)p

Hmin(A|B)p\U

Conditional min-entropy of a cq-state pxp.

Min-entropy of pap relative to op.

Secure multiparty computation

=
Prrp
Ency,
1

F

For
JoLE
FvoLE
Fcom
Fext
JFakecOM
II

Z

Adv

S

Sa

Sp

EXECﬂ’C7Adv,Z

EXECpC,S,Z

DM,

Party 1.

Third trusted party.

Symmetric encryption method with key k.
Empty string/element.

Ideal functionality.

OT functionality.

OLE functionality.

VOLE functionality.

COM functionality.

External functionality.

Fake commitment functionality.
Protocol.
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Chapter 1
Introduction

The field of data mining and data analysis has seen significant advancements with the
increasing power of computers [15]. However, the need for large-scale data collection
can lead to the compromise of sensitive and private information, particularly in fields
such as genomics [16-19]. As a result, the aggregation of data from different sources is
often restricted by laws and regulations such as the General Data Protection Regulation
(GDPR) [20]. While these regulations aim to protect individuals’ privacy, they also limit

the ability of honest parties to access the data needed to address important societal issues.

Secure multiparty computation

To address the privacy concerns outlined above, various privacy-enhancing technologies
have been proposed, such as secure multiparty computation (SMC) [21-23]. SMC enables
a group of n parties, denoted as P;, to jointly compute a function f(z1,...,z,) = (Y1, .-, Yn)
without revealing their inputs to the other parties. The security requirements of SMC
are equivalent to an ideal scenario, where each party P; sends their inputs to a separate,
trusted third party, who then computes f() and returns the corresponding output to each
party.

The research area of SMC has been greatly advanced with the development of vari-
ous protocols and frameworks [24-26]. These protocols can be broadly classified into two
categories: those based on boolean circuits and those based on arithmetic circuits. The ef-
ficiency and security of SMC protocols rely heavily on the efficiency and security of impor-
tant cryptographic primitives, such as oblivious transfer (OT) for boolean-based protocols
and oblivious linear evaluation (OLE) for arithmetic-based protocols [23, 27]. However,
a fundamental limitation of these primitives is their reliance on public-key cryptography,
as proven by Impagliazzo and Rudich [28]. This dependence on public-key cryptography

is a significant drawback in terms of both performance and security, as it requires more



computational resources and is vulnerable to attacks from quantum computers, as demon-
strated by Shor’s algorithm [29]. To address these issues and ensure the safe deployment
of SMC methods in the face of quantum computing, it is crucial to develop SMC methods
that are secure against quantum attacks while maintaining state-of-the-art performance

levels.

A quantum era

The second quantum revolution is upon us and quantum technology has advanced to
a point where we can integrate its unique features into complex engineering systems.
Quantum cryptography, in particular, has been a major area of focus, with research
aiming to develop protocols that offer advantages over their classical counterparts. As

outlined in [30, 31], these advantages can take two forms:

1. Improving security requirements and achieving information-theoretically secure pro-

tocols or those that require fewer computational assumptions;

2. Developing new cryptographic primitives that were previously unattainable using

classical techniques.

While quantum key distribution (QKD) is the most well-known application of quantum
cryptography, other cryptographic tasks such as bit commitment [32], coin flipping [33],
delegated quantum computation [34], position verification [35], and password-based iden-
tification [36, 37] among others, also play important roles in this field.

Also, the intrinsic randomness provided by quantum phenomena can be leveraged
to develop quantum communication protocols for oblivious transfer (OT) [6]. Impor-
tantly, there is a significant difference between classical and quantum OT from a security
standpoint, as the latter can be achieved with only the assumption of the existence of
quantum-hard one-way functions [38, 39]. This means quantum OT requires less security
assumptions than classical OT, as the latter cannot be based on one-way functions alone
[40, 41]. Furthermore, these quantum protocols often possess the desirable property of
everlasting security, which guarantees information-theoretic security after the execution
of the protocol [42]. This greatly improves the security of SMC protocols, allowing them
to rely on symmetric cryptography and one-way functions, and to possess the important
feature of everlasting security. With regards to the oblivious linear evaluation (OLE)
primitive, it is known that it can be reduced to OT [27] through classical methods that
do not require additional assumptions. Therefore, it seems natural to use quantum OT

to generate quantum-secure OLE instances.



Contributions

Despite the many advances, the adoption of quantum cryptography in secure multiparty
computation (SMC) systems has been limited due to the efficiency challenges posed by
quantum technology and the need for high throughput of both OT and OLE primitives
in boolean- and arithmetic-based SMC.

The aim of this thesis is to further the adoption of quantum cryptography in SMC sys-
tems through three key contributions. The first contribution involves a study comparing
the efficiency of classical and quantum protocols. The second contribution is the imple-
mentation of a specialized SMC system for genomics analysis utilizing quantum OT. The
final contribution is the development of the first quantum OLE protocol that does not
rely on OT. Additionally, we have also created a comprehensive review dedicated solely
to quantum OT protocols, which is often overlooked in broader surveys on the topic of

“quantum cryptography”. We describe the contributions in a bit more detail.

Efficiency of classical and quantum OT protocols. As far as we are aware, there
is no comparative study on the efficiency of quantum and classical approaches. This is
largely due to two factors. From a theoretical perspective, the use of different types of
information (quantum and classical) makes it challenging to establish a fair comparison
based on the complexity of the protocols. From a practical perspective, there is also a
significant gap in the technological maturity between quantum and classical techniques.
Quantum technology is still in its early stages, whereas classical processors and commu-
nication have undergone decades of development.

We compare the complexity and efficiency of classical and quantum protocols, despite
their constraints. Both types of protocols can be broken down into two phases: precompu-
tation and transfer. The precomputation phase is independent of the parties’ inputs and
is used to generate the resources needed in the transfer phase, which takes into account
the parties’ inputs. This phase may not be as efficient as the transfer phase, so for com-
parison purposes, we focus on the transfer phase. Notably, the transfer phase of quantum
OT only involves classical communication, making it possible and fair to compare it to
the transfer phase of classical protocols.

We compare the complexity of the transfer phase of two classical OT extension pro-
tocols [3, 4] and an optimized quantum OT protocol in detail. Our conclusion is that
the transfer phase of quantum OT is on par with its classical counterparts and has the

potential to be more efficient.

Quantum assisted secure multiparty computation. In light of individuals’ privacy

concerns and legal regulations, it is crucial to handle and study genomic data using



highly secure privacy-preserving techniques. We propose a practical secure multiparty
computation (SMC) system that utilizes quantum cryptographic protocols to compute a
phylogenetic tree from a set of private genome sequences. This system applies several
distance-based methods, such as Unweighted Pair Group Method with Arithmetic mean,
Neighbour-Joining, and Fitch-Margoliash, in a private setting where the sequences owned
by each party are not revealed to other members during the protocol. Instead of using
a generic SMC implementation for phylogenetic trees, we develop a specialized private

protocol that improves efficiency for this specific use case.

We conduct a theoretical evaluation of the performance and privacy guarantees of our
proposed system, providing a complexity analysis and security proof. We also provide a
detailed explanation of the implementation details and cryptographic protocols used. We
demonstrate the effectiveness and practicality of our quantum-assisted secure phylogenetic
tree computation by implementing it using the Libscapi implementation of the Yao proto-
col, the PHYLIP library and simulated keys of two quantum systems: quantum oblivious
key distribution and quantum key distribution. * We compare our implementation with
a classical-only solution and find that both approaches have similar execution times. The
only difference between the quantum and classical systems is the time overhead taken by

the quantum-assisted approach for oblivious key management.

Quantum oblivious linear evaluation protocol. Our last contribution is a quantum
protocol for OLE that provides quantum-UC security in the Fconm—hybrid model, which
assumes the availability of a commitment functionality, Fcom. To ensure security, we
leverage the properties of Mutually Unbiased Bases in high-dimensional Hilbert spaces
with prime and prime-power dimensions. This approach is motivated by recent theoretical
and experimental advancements in quantum cryptography [43-47] that have opened the

door for new solutions in the field.

As far as we are aware, our protocol is the first to propose a quantum-UC secure
quantum OLE. Furthermore, it does not rely on any quantum OT implementation, which
is a common approach. We design the protocol to handle static corruption adversarial
model for both semi-honest and malicious adversaries. Additionally, we introduce a weaker
version of OLE, which has potential independent value. We also modify the proposed
protocol to generate quantum-UC secure vector OLE (VOLE) and provide bounds on the

size of VOLE based on the security parameters.

!The code can be accessed at the following repo: github.com/manel1874/private-phylogenetic-analysis.
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Outline

The results are presented as follows. We start presenting the technical elements required
throughout the thesis in Chapter 2. Chapter 3 is devoted to quantum oblivious transfer
protocols. Then, in Chapter 4 we compare classical and quantum approaches for OT. In
Chapter 5, we presented our implementation of quantum-assisted SMC system applied to
phylogeny analysis. In Chapter 6, we present our quantum OLE protocol along with its
security proof. Finally, in Chapter 7 we present an overall conclusion of the thesis and

propose some future work.
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Chapter 2
Technical overview

In this chapter, we present the fundamental mathematical and information-theoretic con-

cepts that are utilized throughout the thesis.

2.1 Mathematical preliminaries

In this section, we define and explain the mathematical notation and concepts used

throughout the thesis.

First, we use ged(a, b) to denote the greatest common divisor between integers a and b,
with a,b € Z. We use Z, to denote the set of integers a mod ¢, and Z; to denote the set
of integers a € Z, that are coprime with ¢, i.e., ged(a, q) = 1. When ¢ is prime, Z; forms
a multiplicative group of order ¢ — 1 and Z, forms a finite field of order ¢q. A generator
g of a multiplicative group G is an element in G such that for all @ € G, there exists an
integer r such that ¢" = a. The discrete logarithm base g of an element a € G, denoted

by log, a, is the power r of g such that g" = a.

We use |I| to denote the size of a set I and use the notation s <—g I to describe
a situation where an element s is drawn uniformly at random from the set I. Vectors
v = (v1,...,v,) are denoted in bold. Given a set J, v); denotes the subvector of v
restricted to the indices ¢ € J. For m € Z,, [m] is the ordered set 1,2,...,m, and for
m,n € Zg such that m < n, [m,n] =m,m+1,....,n—1,n. Forx,y € Z;, ry(z,y) =
dy(x,y)/n is the relative Hamming distance, where the Hamming distance is given by
dr(z,y) = li : 2; # yi-

Finally, we use the big-O notation to denote the fastest-growing term of the number
of operations with respect to some security parameter n. A negligible function u(n) is a

function such that p(n) < 1/p(n) for some polynomial p(n) and sufficiently large n.
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2.2 Secure multiparty computation

Secure multiparty computation (SMC) allows multiple parties, denoted as P, with i €
1,...,n, to jointly compute a function, f(xi,...,x,) = (y1,...,Yn), without revealing
their individual inputs, z;, to each other. The only information received by each party P,
is their corresponding output y; of the function f(), which may reveal some information
about the parties’ inputs depending on the function being computed. This functionality
is designed to be equivalent to a scenario where each party P; sends their input z; to
an independent and trusted third party Prrp, who computes f(xy,...,z,) and sends the
output y; to each party.

It is important to note that SMC may not completely hide the inputs of the parties,
even with a perfectly secure protocol. This is due to the security guarantees of the ideal
scenario, where it is possible for a perfectly legitimate SMC protocol (such as using a
trusted third party) to leak all the inputs of the parties. This can happen when one of
the parties can use their inputs and outputs to invert the function f(). For example, if
two parties want to compute the average of their weight, it is straightforward for both
parties to use their weight and the average value to compute the other party’s weight, as
the function is bijective with the adversaries’ inputs fixed. In this scenario, SMC does
not improve the privacy of the computation.

The following are some informal descriptions of properties of SMC:

1. Correctness: If all the parties abide by the protocol, the protocol will evaluate the

correct output according to f() and the parties’ inputs xy, ..., x,.

2. Passive security: If the adversaries do not deviate from the protocol, they do not
learn the inputs of the honest parties. In this thesis, we refer to adversaries who
do not deviate from the protocol as semi-honest parties, also known as honest-but-

curious adversaries in the literature.

3. Active security: If the adversaries deviate arbitrarily from the protocol (dishonest
parties), they do not learn the inputs of the honest parties. In active security, there
are two types of protocols that react differently to adversarial behavior. They can
be robust against the adversaries, meaning the honest parties will still receive the
correct answer, or the honest parties can abort the protocol when there is malicious

activity.

Regarding the corruption strategy of the adversaries, they can be of two types: static or
adaptive. Static security guarantees that the protocol is secure against an adversary who
only corrupts parties before the execution of the protocol. Adaptive security is a more

challenging property to attain, as it assumes that the adversary can choose which party



to corrupt throughout the protocol. It is also worth noting that there is a fundamental
difference between the adversarial structure of encryption methods and SMC methods.
In encryption methods, the adversary is considered an external party (usually referred to
as Eve) that interferes with the communication between the protocol parties. In the case
of SMC methods, the adversaries are a subset of the protocol parties.

Next, we present two common approaches used for SMC protocols: the garbled circuit
approach and the secret sharing approach. The garbled circuit approach is generally
based on boolean circuits and follows from the techniques developed by Yao [23]. The
secret sharing approach is commonly based on arithmetic circuits (although it can also
be used with boolean circuits) and follows from the properties of secret sharing [8, 10].
It should be noted that throughout this thesis, we will focus on two-party protocols. For
this reason, we name these parties Alice and Bob, and follow the convention that Alice

plays the role of the protocol’s sender and Bob plays the role of the receiver.

2.2.1 Garbled circuit approach

The garbled circuit approach, which is based on Yao’s seminal work [23], proposes a tech-
nique to “encrypt” boolean circuits in such a way that preserves the security requirements
of both parties. This “encrypted” version is called a garbled circuit and is presented in
this section along with the Yao protocol description. This approach is typically best suited
for scenarios with higher latency, as it typically requires a fixed number of communication
rounds, regardless of the complexity of the function being evaluated. However, for large
circuits, high bandwidth is required [54].

Before delving into the details of the Yao protocol, it is important to introduce a crucial

primitive: oblivious transfer (OT).

Oblivious transfer

The study of oblivious transfer (OT) has been active since its first proposal by Rabin
in 1981 [55]. The importance of OT comes from its wide range of applications. In par-
ticular, it can be proven that OT is equivalent to the secure two-party computation of
general functions [56, 57], meaning that a secure two-party computation can be imple-
mented using OT as its building block. Additionally, this primitive can also be used for
secure multiparty computation (SMC) [27], private information retrieval [58], private set
intersection [59], and privacy-preserving location-based services [60].

The OT functionality can be presented in many flavours. In this thesis, when we refer
to OT, we mean the 1-out-of-2 OT that is specified in Figure 2.1. Consequently, we have

that OT must satisfy the following security requirements:



e Concealing: Alices knows nothing about Bob’s bit choice b.

e Obliviousness: Bob knows nothing about the message mpg.

OT can be generalized to the case of k-out-of-N OT, where Alice owns N messages,
and Bob can choose k of them. For k£ = 1, this is commonly called private database query

(PDQ). Also, we call random OT when both parties’ inputs are random.

Yao protocol

A solution for SMC was first proposed by Yao [23], where he developed the concept of
garbled circuits, which is one of the key elements for secure computation. The Yao’s
garbled circuit protocol is originally designed for only two parties, but its generalization
to multiple parties was later achieved by GMW [24] and BMR [9]. Additionally, various
implementation optimizations have been developed to improve the performance of the
Yao protocol, such as point-and-permute [9], row reduction [61, 62], FreeXOR [63] and
half gates [64].

As mentioned before, the main idea of the Yao protocol is to represent the desired
function f() as a boolean circuit C, i.e. a sequence of logical gates interconnected with
wires. After the generation of the circuit C, each party will have two distinct roles.
Generally speaking, Alice (also known as the garbler) randomly generates keys for each
input bit, encrypts each circuit’s gate, and sends both elements to Bob (also known as the
evaluator). This procedure masks Alice’s inputs from Bob. Then, through the oblivious
transfer (OT) functionality, Bob receives the keys corresponding to his input bits. This
allows to mask Bob’s inputs from Alice. Finally, since the evaluator has all the input
keys, he can decrypt every gate, and evaluate the circuit. To better understand how the

protocol works, let us consider a four-input boolean circuit description of the Millionaires’

For functionality

e Input phase: Alice sends (mg, m;) € {0, 1} (two messages) to For and Bob
sends b € {0, 1} (bit choice) to For.

e Output phase: Alice receives nothing | from the functionality and Bob
receives mg.

Figure 2.1: OT functionality.
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problem. This problem can be described by the following expression:

1 if a>0b,
fla,b) = (2.1)

0 otherwise,

for a,b € {0,1}?. In summary, it allows two parties to discover who has the largest value
without revealing them.

The protocol goes as follows:

1. Circuit generation: The garbler Alice generates a boolean circuit of function (2.1):

a, a, by by

W] W2 W3 w4

Y.,

DR o

w8

7

Figure 2.2: Boolean circuit of the Millionaires’ Problem. Optimised circuit according to
the construction in [1].

In this case, the circuit contains one NOT gate (g;), two AND gates (g2, and gs),
two XOR gate (g4 and gg), one XNOR gate (g3) and four input wires (w; and we
belonging to Alice and w3 and wy to Bob).

2. Wire encryption: Alice uses a random number generator to generate two keys k)
and k} for each wire w;, i € {1,...,10}. These keys correspond to the possible values
(0 or 1) on the wire. Note that this is done to prevent Bob from knowing the true

value of the wires during the evaluation process.

3. Gate encryption: For every gate g; in the circuit with corresponding input wires w;

and w; and output wire w,, Alice creates the following table:

Encyo (Enck? (;@(0,0)))

0,1)




where g;(a, b) is the output of gate g; for inputs a,b € {0,1}. So, we could think of
each row as a locked box that requires two keys to be opened. If the two correct
keys are used, it outputs the key corresponding to the desired output value given
by ¢g;. After encrypting each gate, Alice permutes the rows of the corresponding
table, otherwise, it would be easy to know the real value of the input keys. Then,

she sends to Bob the garbled tables along with Alice’s input keys.

As an example, we can easily see that if we use input keys kY and k:]l (corresponding
to real values 0 and 1), we would only be able to decipher the second row of the
table, Encyo (Ency: (k2 ®Y)) and get kZOY.

. Oblivious Transfer: At this stage of the protocol, the evaluator Bob knows the
garbled circuit and Alice’s input keys but he does not know the keys corresponding
to his real inputs. However, since Bob wants to keep his input value private he
cannot directly ask for those keys. At this point, the OT functionality enables the
evaluator to receive his input keys without compromising neither the evaluator’s nor
garbler’s security. In fact, for every input wire, both parties perform an OT where

Alice plays the role of the sender and Bob plays the role of the receiver.

Let us assume Alice’s input keys to be k¢ and &} (corresponding to the real value 01)
and Bob’s input bits to be 11. This means that Bob must use the respective input
keys (k3 and k}) in order to correctly evaluate the circuit. So, they will execute two

OT protocols where:

e Alice inputs: (k3,k3) and (K9, k});

e Bob inputs: by =1 and by = 1.

. Evaluation: Once the evaluator has all the necessary elements, he can proceed with
the circuit evaluation. In this step, he simply has to decipher the correct rows of
the garbled tables sent by Alice with the corresponding keys. Since the rows of the
tables are shuffled, the evaluator does not know which row is the correct one. This
small issue can be solved by simple techniques (Point-and-Permute or encryption
with a certain number of 0 padded) which, for the sake of brevity, we will not explore
here. At the end of the evaluation, the evaluator receives the key that corresponds
to the result. Finally, the evaluator sends the resulting key to the garbler and the
garbler tells him the final bit.

According to our Millionaires’ problem, the evaluation yields the following results
for a =01 and b= 11: g1(ky) = k3, g2(k3, k3) = kg, ga(kg, k3) = k2, ga(kg, kY) = kg,
gs5(k9, k%) = kS, g6(kd, k) = kY. Actually, the desired result is 0.
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The Yao protocol has its security based on two main building blocks: garbled circuits
and oblivious transfer. Although garbled circuits can be generated with symmetric en-
cryption (i.e. using double AES encryption), OT protocols cannot be classically achieved
with symmetric cryptography alone [40]. Thus, it is crucial to find efficient protocols for

a quantum-resistant OT.

2.2.2 Secret sharing approach

The secret sharing approach, first introduced by BGW [8] and CCD [10], does not involve
encrypting the circuit. Instead, parties use a secret sharing scheme to evaluate the circuit.
This approach involves simple operations such as addition and multiplication, but the
number of communication rounds needed will depend on the size of the circuit being

evaluated. An important primitive for secret sharing based protocols is oblivious linear
evaluation (OLE).

Oblivious linear evaluation

Oblivious linear evaluation (OLE) can be thought of as a generalization of oblivious trans-
fer (OT) [55]. It has been shown to be a building block for securely evaluating arithmetic
circuits, such as in [65-68]. Specifically, OLE can be used to generate multiplication
triples, which are essential for securely computing multiplication gates [68]. OLE also
has applications in tasks such as two-party secure computation [69-73] and private set

intersection [74].

FoLe functionality

e Input phase: Alice sends (a,b) € Z?2 (two field elements) to Forg and Bob
sends x € Zg to FoLE-

e Output phase: Alice receives nothing | from the functionality and Bob
receives f(x) :=ax +b.

Figure 2.3: OLE functionality.
The OLE functionality specification is presented in Figure 2.3. Similarly, we have that
OLE must satisfy the following security requirements:

e Concealing: Alices knows nothing about Bob’s field element x.

e Obliviousness: Bob knows nothing about the function f() other than its evaluation
at x, i.e. f(z).
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We can also generalize the OLE functionality to a vectorized version. The vector OLE
(VOLE) functionality is presented in Figure 2.4. Note that Bob only inputs one field

element x and Alice inputs two vectors.

Fvore functionality

e Input phase: Alice sends (a,b) € Z2" (two vectors of field elements) to
Fvore and Bob sends OIlly T € Zg to FVOLE-

e Output phase: Alice receives nothing | from the functionality and Bob
receives f(x) := az + b.

Figure 2.4: VOLE functionality.

Basic operations

To highlight the importance of OLE in secret sharing based SMC protocols, we go through
a passively secure protocol [75]. We consider the two party case (Alice and Bob) where the
parties own additive shares of the secret. So, for some secret value x, where © = x4 + 2,
Alice owns x4 and Bob owns xg. Depending on the circuit, the operations used in the

protocol are as follows:
e Input. For Alice to secret share her input value z, she randomly chooses xp and
sends it to Bob. Alice defines x4 as x4 = — zp;
e Addition. There are two scenarios to consider:
— Scalar. For Alice and Bob to add a scalar to a secret = (z = a + x), Alice
computes z4 = a + x4 and Bob sets zg = z.
— Shares. For Alice and Bob to add secrets x and y (z = z+y), they individually
add their corresponding shares, i.e. 24 = x4 +ya and 23 = x5 + yp.
e Multiplication. There are two scenarios to consider:
— Scalar. For Alice and Bob to multiply a secret x by a scalar a (z = a - x),
Alice computes z4 = a - 4 and Bob computes zp = a - zp.

— Shares. Observe that, for Alice and Bob to multiply secrets x and y (2 = z-y),

they require some sort of communication to compute cross terms:

x-y = (xa+xp)  (ya+ys) (2.2)
= Ta-Ya+Ta-Yp+Tp-Ya+2rp-Yn (2.3)
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At this point, Alice and Bob can execute two OLEs to secret share the cross
terms x4 - yp and xp - y4. Indeed, if Alice inputs (x4, —sa) and (ya, —s')
for random values sg4, s, and Bob inputs yp and xg, Bob will output sp =
Ta-yp— Sa and sy = ya - xp — 4. Thus, we have that s+ sp = x4 - yp and
s’y + 85 = ya - xp. So, Alice share is z4 = x4 - ya + sa + s’y and Bob share is

ZB:SB_'_S,B"i‘l'B‘yB-

e Output. For Alice to receive the output value z of some output wire, Bob simply

sends zp to Alice. Alice outputs z = x4 + x 5.

2.3 Quantum information

Quantum information theory is a field that studies the implications of using quantum
systems as the medium of information. The information carriers in quantum systems are
governed by the laws of quantum mechanics, allowing for properties not present in classical
methods to be exploited. In this section, we present the basic elements of quantum
information that will be used in the quantum protocols presented and their security proofs.

In quantum information theory, a quantum system is described by a Hilbert space H 4.
In this thesis, we will consider only finite-dimensional Hilbert spaces, where dimH 4 =
d < oo. The space H 4 can be identified with the complex vector space C¢, as well as its
corresponding dual space H%. We use the Dirac bra-ket notation to describe the states
of a quantum system. A pure state is described by a normalized vector |¢) , € H4 and
its dual vector (1|, € H%. To simplify notation, we may omit specifying the Hilbert
space to which a state belongs if it is clear from context. The standard basis of C¢ can
be identified with the computational basis of H., denoted as {|i)}?_;. The joint system
of multiple subsystems H;,...,H, can be described by their tensor product, denoted as
H1®...®@H,. The vectors in this joint system are represented as |x) = |71) ® ... ® |z,),
where x € Z7.

We can generate quantum pure states, denoted as [i;) € H, according to a prob-
ability distribution p;. This situation is described by a density operator, denoted as
p =Y. pi |¥i)(¥;|, which is commonly referred to as a mixed state. Density operators are
positive semi-definite hermitian operators with unitary trace, that is, p > 0 and trp = 1.
The set of hermitian operators, positive semi-definite operators and density operators on
a Hilbert space H are denoted as Herm(#), Pos(#) and P(H) respectively.

Py (x) |x)x|, where

X is a finite set and Py is a probability distribution over X'. The uniform distribution over

A mixed state is considered classical if it is of the form pxy = > .

X is denoted as Ty = ﬁ Y sex |T)|, where | X[ is the size of X. The identity operator is

denoted by 1. Additionally, for a bipartite quantum state pxp, it is said to be a classical-
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quantum state (cq-state for short) if it is of the form pxp = > .1 Px(2) [z) (x| ® pF,
where Px is a probability distribution over the finite set X.

2.3.1 Trace distance

Proving the security of quantum protocols requires a method for distinguishing quantum
states. Fortunately, there is a useful metric, known as the trace distance, that measures
the distinguishability of two quantum states, o,p € P(H), by any procedure, regardless
of efficiency. The trace distance is defined as [76]

1
(6, 0) = 5llo = oI,

where ||-]|1 is the 1—Schatten norm in the space of bounded operators acting on a Hilbert

space. Its name comes from the fact that we can write it using the trace operator as follows

lo=alh =T {V/(r=o)(p—o)}

In this work, we will utilize completely positive trace preserving (CPTP) maps. These
maps are defined as preserving the normalization of input states and mapping positive
operators to positive operators. As aresult, they ensure that density operators are mapped
to density operators, making them useful in describing all physically possible operations.
They will be a key focus in Chapter 6, which deals with the quantum oblivious linear
evaluation protocol. However, it is important to note that CPTP maps do not increase
the distinguishability between quantum states, as proven in Lemma 1. In other words, the
trace distance between two quantum states remains unchanged after being transformed
by a CPTP map.

Lemma 1 (Lemma 7, [76]). The trace distance has the following properties:

1. For any CPTP map &€ and any o, p € P(H) we have that
6(€(0),E(p)) < 6(o,p).
2. Let 0,0 € P(H) and p € P(H'). Then,
S(o®p,0 @ p)=0d(c,0").

Although the following lemma is not directly related to the trace distance, it will be

used in Chapter 6 to bound the trace distance between two states.
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Lemma 2 (Corollary 4, [77]). Let X := {xy,...,z,} be a list of (not necessarily distinct)
values in [0,1] with the average px = £ 3. ;. Let T of size t be a random subset of
X with the average pr 1= %Z x;. Then, for any e > 0, the set T = X \ T with average

[r = == .k T satisfies

€T

P

n(t+1) 1
s — > 4 ——log~| <e.
ur MT_\/2(n—t)t2 ogJ_e

2.3.2 Entropy

Entropy measures are used to quantify the unpredictability of a random variable and
the amount of information gained by observing a system. One of the earliest and most
widely used classical entropy measures was developed by Shannon in 1948 [78]. Shannon’s
entropy measure captures the idea that more predictable events convey less information.
The more surprising and unpredictable an event is, the more informative it is. Shannon
started by proposing the following function to describe the amount of information an

event A has:
I(A) = —log (P(4)),

where P(A) is the probability of event A. Shannon’s entropy is defined as the average
amount of information of all possible events, and, for a discrete random variable X, is

calculated as follows:

In the case of a distribution P(X) over the set {0, 1} that selects 1 with probability p
and 0 with probability 1 — p, the binary entropy is given by the following equation:

H(X) = —plogyp — (1 —p)logy(1 —p).

Throughout our analysis, we will also frequently use the d—ary entropy function, which
is a generalization of the standard binary entropy function. However, it should be noted
that the d—ary entropy does not possess the same operational meaning as the binary

entropy measure.

Definition 1. For d > 2, the d-ary entropy function hg : [0,1] — R is given by

hg(z) = xlogy(d — 1) — xlog,x — (1 — x) log,(1 — z).
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The d—ary entropy is specially useful to bound the size of an important object in
coding theory, the Hamming ball. The Hamming ball with radius p centered at some
point 7 is defined to be the set of vectors z at a distance p from 7, when the distance is

given by the Hamming distance dy. So, we have the following Lemma.

Lemma 3 (Lemma 5, [79]). For an integer d > 2 and p € (0,1 = 3],
H{zeZy:dy(z,r) <pun} < qhalwn

When proving the security of protocols, it is crucial to understand the worst-case
scenario rather than the average behavior. Therefore, the standard binary entropy def-
initions are not sufficient for securing protocols, and a new measure is needed. This is
achieved through the use of min-entropy. Classically, for a finite random variable X,

where P(X = x) = p,, the min-entropy is defined as:
Hyin(X) = — logmax p,.

Operationally, this gives the probability of correctly guessing the element drawn from X,
when choosing the element  with maximum probability. That is, Pyuess = max p,. This

definition can also be extended to cq-states pxp € P(Ha®@Hp) as defined in Definition 2.

Definition 2. Let pxp € P(Hx ® Hp) be a cq-state. The conditional min-entropy is
given by
Hmin(X|B)p = - 1Og Pguess(X|B)7

where the mazximization is taken over all positive operator-valued measures (POVM), i.e.

{M, >0:> M, =1}

In Definition 2, Pyuess(X|B) represents the probability of correctly guessing x given
access to system B. Additionally, the maximization is taken over the most general type
of measurements allowed in quantum mechanics. The following lemma states how min-
entropy changes when a fixed bijective function is applied to the classical subsystem of a
cq-state. This lemma will be important in the proof of security for the quantum oblivious

linear evaluation protocol presented in Chapter 6.

Lemma 4. Let pxp € P(Hx ® Hp) be a cqg-state and let f : X — X be a fized bijective
function. Then,
Hunin(X|B)p < Hunin(f(X)|B),-
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Proof. Consider the unitary operator,
U= |f@)al.

We check that U is indeed unitary:

Um:(gyﬁm@o(ZMMﬂwO=§]ﬂ@wwﬂ=L

where in the last step we used the fact that the function f is a bijection. The same holds
for UTU = I.

Now, observe the following,
Huin(f(X)IB) = —log max 3 pa tr Mo
= —log max Lt | MU fUT
g {Mz}zzx:p (M, UpPUT]

= —log {rﬁ?ﬁ Zc:pm tr [UTMzUPﬂ .

It is important to note that {N,}, = {UTMIU}QC is also a POVM, as they are all posi-
tive semidefinite operators and they sum up to unity. Therefore, we have that {U "ML U }z

can only decrease the space of possible POVMs, which is why we have:

{rﬁ?i Zp$ tr [UTMgCprB] < {51\143i ;pz tr [Mmpr} )

xT

['his means that,
H. i (f(X)|B) > —log max E o tr [MopB| = Hpin(X|B).
(f(X)]B) g{Mz}:c - D [ p] (X]B)
m

The conditional min-entropy can be generalized to the fully quantum case where both

systems are quantum (Definition 3).

Definition 3. Let pap € P(Ha @ Hg) and op € P(H's). The min-entropy of pap

relative to op: is given by

Hypin(A|B') o = —logmin{\ : X - idy ® 05 > pap'},
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and
Honin(A|B"), = sup Hypin(A|B')

O'B/'
O'B/
Furthermore, consider the superposition state |¢) .5 = > 2 € Ba, |z) [¢*) for some
set B and arbitrary coefficients o,. We define pap = |p)¢| 15 and the mixture pap =

>oen e 12Xz @ [ )?]. The following lemma gives a lower bound on the min-entropy

of pap in terms of the min-entropy of pap.

Lemma 5 (Lemma 3.1.13, [80]). Let pap and pap be defined as above. Then,

Hin(A|B'), > Hpin(A|B'); — log | B].

It is important to understand the changes in min-entropy that occur when a completely
positive (CP) map is applied, as this is a crucial aspect of the security proof for the
quantum oblivious linear evaluation protocol outlined in Chapter 6. It is known that, for
a unital CP map M (i.e. M(1) = 1), the conditional min-entropy does not decrease,
i.e. Hpin(M(A)|B) > Huin(A|B). However, this result alone is insufficient for deriving
practical min-entropy bounds. To obtain meaningful bounds for specific operators M,
it is necessary to utilize Theorem 6, in conjunction with Lemma 8 and Lemma 9. It is

important to note that for clarity, the theorem employs the notation outlined in Chapter 6.

Lemma 6 (Theorem 1, [81]). Let X denote a system with n qudits, and Mx_,gy be a CP
map such that (M'oM)x ®@idg)(Pxx) = Z(a,b)ezgn Nap)Pap)- Then, for any partition
of 23 = &, UGS_ into subsets &, and &_, and M(oxg) = opyr we have

2_H2(FY|E)0FYE|”XE < Z )\(avb)Q_HQ(X‘E)oxE + < Iila}é )\(a,b)) dn, (24)
(a,b)eG (a,b)e -

where, in general, for a (not necessarily normalized) quantum state pap € P(Ha ® Hp),

Hy(A|B) is the so-called collision entropy [80], given as

2
Hy(A|B)p,, = —log (Tr{ (p?/ paspg’ 4) }) :

If we further condition on a general quantum state op € P(Hp), we have

2
H(AIB) e = o8 (1] (75 g ") }).

It is interesting to note that when M is trace preserving, we have,

o—Ha(FY|E) 9—H2(FY|E)

FYEIXE — IFYE
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This follows from the definition of the collision entropy and the fact that Trry [M(oxg)| =

Next, we present a chain rule for the collision entropy.

Lemma 7 (Proposition 8, [82]). For any papc € P(Ha ® Hp @ Hc¢), it holds that
Hy(A|BC), > Hy(AC|B) — logdc,

where d¢ s the rank of pc.

Now, we need a way to relate min-entropy and collision entropy to have useful bounds

for min-entropy. This is done through the following two Lemmas.

Lemma 8 (Lemma 17, [81]). Let pap € P(Ha® Hp') and da = dimH 4. Then
Hyupin(A|B"), < Hy(A|B'), < 2Huin(A|B'), + log d .
Lemma 9 (Lemma 18, [81]). Let pxp € P(Hx @ Hp') be a cg-state. Then
Huin(X|B'), < Hy(X|B') < 2Humin(X[B'),.

Finally, we present a data-processing inequality, which reflects the intuitive idea that
the min-entropy of a system A, given side information B, does not decrease under local

physical operations applied to B.

Lemma 10 (Data processing inequality, Theorem 6.19, [83]). Let pap € P(Ha @ Hp).
Moreover, let € be a sub-unital CPTP map from system A to A" (i.e. E(14) < 1) and
T be a CPTP map from system B to B'. Then, the state cap = (£ @ T) pap satisfies

Hmin(A|B)p S Hmin(A/|B/>a-

2.3.3 Two-universal functions

We start by defining a particular set of functions that are usually used to amplify the

privacy of the parties’ input and output elements.

Definition 4 (6—almost two-universal hash family; two-universal hash family). A family,
S, of functions, g, with domain D and range R is called a 6—almost two-universal hash
family if for any two distinct elements w,w’ € D and for g chosen at random from §, the
probability of a collision g(w) = g(w') is at most 6. In the special case that 6 = 1/|R)|,

where |R| is the size of the range R, the family is called two-universal.
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Now, we present a particular two-universal hash family, known as Multi-linear Mod-
ular Hashing (MMH), that preserves the structure of the OLE input and output while
maintaining its privacy amplification guarantees. This family is based on the modular

inner product of vectors [84].

Definition 5 (Definition 2, [84]). Let d be a prime and let n be an integer n > 0. Define
a family MMH* (Multi-linear Modular Hashing) of functions from Z} to Zg as follows

MMH" :={g, : 7}, — Zq|x € Z}},
where the functions g, are defined for any x = (z1,...,2,), m = (my,...,m,) € Z}

gz(m) =z -m moddzZmimi mod d.

Theorem 1 (Theorem 3, [84]). The family MMH* is two-universal.

Halevi and Krawczyk [84] actually prove a stronger result, namely that the MMH* fam-
ily is A—wuniversal, which is more general than two-universal. For the sake of simplicity,
we only present the simpler version of this theorem here.

The Generalized Leftover Hash Lemma, presented below, is a crucial component in
the security proof of Chapter 6. It ensures that, after applying a known function g from
a two-universal family to a random variable X, the resulting random variable Z = ¢g(X)
is close to uniform, given some (possibly quantum) side information E. This is a high-
dimensional version of the Leftover Hash Lemma, which can be easily derived by using
Lemma 4 from [85] with d4 = d'. Note that this is a special version, as Tomamichel et

al. in [85] prove it in the more general case for d—almost two-universal hash families.

Lemma 11 (Generalized Leftover Hash Lemma [85]). Let X be a random variable, E a
quantum system, and § a two-universal family of hash functions from X to ZY. Then,
on average over the choices of g from §, the output Z := g(X) is {-close to uniform

conditioned on E, where

5 — %\/2l IOgd_Hmin(XlE)‘ (25)

2.4 Universal composability

The universal composability (UC) framework, first introduced by Canetti in the classical

setting [86], was extended to the quantum setting by Unruh, Ben-Or, and Mayers [87, 88|
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(see also [89, 90]). It provides strong composability guarantees by ensuring the security
of a protocol is independent of any external execution of the same or other protocols.
Both the classical and quantum frameworks use the same ideal-real world comparison
structure and consider similar interactions between machines. However, the quantum-
UC framework allows for the manipulation of quantum states in addition to classical
operations.

Specifically, the quantum-UC security of a protocol II is determined by comparing its
execution in a real scenario, where II is executed, to an ideal scenario, where an ideal
functionality F that carries out the same task is executed. The comparison is performed
by a special machine called the environment, Z, which supervises the execution of both
scenarios and has access to any external information, such as concurrent executions of the
same or any other protocol. In the two-party case, the structure of the machines in both
scenarios is as follows: in the real scenario, there is the environment Z, the adversary Adv,
and the two parties, Alice and Bob. In the ideal scenario, there is the environment Z, the
simulator S, the two parties Alice and Bob, and the ideal functionality /. Informally,
a protocol II is considered quantum-UC secure if the environment Z cannot distinguish
between the execution of Il in the real scenario and the execution of the functionality F
in the ideal scenario. Any possible attack of the adversary Adv in the execution of I can
be simulated by the simulator S in the ideal-world execution of F, without any noticeable
difference from the point-of-view of the environment Z. As the ideal functionality F is
secure by definition, the real-world adversary is not able to extract any more information
than what is allowed by the functionality F.

The formal definition of quantum-UC security can be stated as follows. Let II and p
represent the real and ideal two-party protocols, respectively. Let EXECpc 44, z denote
the output of the environment Z at the end of the real execution, where C' denotes the
corrupted party and Adv denotes the adversary. Similarly, let EXEC,c s z denote the

output of the environment Z at the end of the ideal execution, where § is the simulator.

Definition 6 (Statistical quantum-UC security, Computational quantum-UC security
[89]). Let protocols m and p be given. We say that w statistically quantum-UC emulates p
if and only if for every party, C, and for every adversary, Adv, there exists a simulator,

S, such that for every environment Z, and every z € {0,1}*, n € N,
| PIEXECyc gy z(n, z) = 1] — PIEXEC,c 5 z(n, 2) = 1]| < p(n),

where p(n) is a negligible function and n is the security parameter. We furthermore
require that if Adv is quantum-polynomial-time, so is S. Finally, if we consider quantum-

polynomial-time Adv and Z we have computational quantum-UC' security.
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Fcom functionality

e Commitment phase. Upon receiving (commit, M) from Bob, the function-
ality sends commit to Alice.

e Opening phase. Upon receiving open from Bob, the functionality sends
(open, M) to Alice.

Figure 2.5: Commitment functionality.

The role of the simulator, S, in the quantum-UC framework is to simulate the execution
of the protocol II in such a way that the environment Z is not able to distinguish between
the real execution and the ideal execution. To accomplish this, & runs a simulated honest
party that interacts with the environment, which is acting as the adversary. Additionally,
S controls the dishonest party and their inputs to the ideal functionality F, as well as
the external functionality Feyt if used in the real execution.

In order to generate a simulated execution that cannot be distinguished by the en-
vironment, S relies on its ability to extract the inputs provided to the dishonest party
by the environment and uses them along with the ideal functionality outputs. Further-
more, § can reprogram JFeyy in the ideal world as needed to produce an indistinguishable
simulation of the real world.

In summary, the simulator § plays a crucial role in the quantum-UC framework by
simulating the execution of the real protocol II in the ideal scenario, in order to ensure
that the environment Z is not able to distinguish between the real execution and the ideal

execution, thereby providing strong composability guarantees for the protocol II.

Ideal functionalities

Whenever a protocol II utilizes an external functionality Fext, we say that II is in the
Fext—hybrid model. The quantum OLE protocol Ilqorg presented in Chapter 6 employs
the ideal commitment functionality, Fcom, defined in Figure 2.5. Note that the protocol
makes multiple calls to Fcom and only opens a subset of the committed elements. To
specify different instance calls, we use an index element 7. In the commitment phase, Bob
sends (commit, 7, M) to the functionality, which in turn sends (commit,i) to Alice. In the
opening phase, Bob sends (open, i), and the functionality sends (open,i, M) to Alice.
The Fcom functionality can be replaced by the commitment protocol Ilcom pre-
sented in [91], which is computationally UC-secure in the Common Reference String

(CRS) model. As analyzed in [92] (Theorem 3.), the protocol I[Icom computationally
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quantum-UC realizes Fcom in the CRS model. Therefore, since [Iqorg is proved to be
quantum-UC secure, the resulting protocol Hg‘fﬁ“ﬁ is quantum-UC secure by the compo-

sition theorem [89].

2.5 Conclusion

Throughout this chapter, we introduce the essential concepts that underpin the rest of
the thesis. The chapter is divided into four main sections. First, we provide a succinct
overview of the mathematical notation. Next, we give an informal description of secure
multiparty computation. Finally, we introduce the basic formalism of quantum informa-

tion and the universal composability framework in the quantum setting.
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Chapter 3
Quantum oblivious transfer

In the classical setting, it is not possible to develop information-theoretic secure OT or
reduce it to one-way functions, and therefore public-key computational assumptions are
required. Impaggliazzo and Rudich [40] demonstrated that one-way functions alone cannot
imply key agreement, which is an example of asymmetric cryptography. Additionally,
Gertner et al. [41] noted that since OT implies key agreement, this establishes a separation
between symmetric cryptography and OT. Therefore, it is not possible to generate OT
using only symmetric cryptography, as one could potentially use one-way functions to
implement key agreement through the OT construction. This poses a threat to all classical
OT protocols [13, 93, 94] that rely on mathematical assumptions that can be provably

broken by a quantum computer [29].

Aside from the security issue, asymmetric cryptography tends to be computationally
more complex than symmetric cryptography, creating problems with speed when a large
number of OTs are required. The classical post-quantum approach aims to find protocols
that are resistant to quantum computer attacks, but these protocols are still based on
computational complexity problems and are not necessarily less computationally expen-

sive than the previously mentioned protocols.

In parallel to the classical post-quantum approach, the field of quantum cryptography
has attempted to address this security issue by developing OT protocols based on quan-
tum technologies. Interestingly, Wiesner proposed a similar concept more than a decade
before Rabin’s classical OT was published in 1981 [55]. At the time, Wiesner’s pro-
posal was rejected for publication due to a lack of acceptance in the research community.
However, the first published quantum OT (QOT) protocol, known as the BBCS (Bennett-
Brassard-Crépeau-Skubiszewska) protocol [6], was not presented until 1992. There is a key
difference between classical and quantum OT from a security perspective: quantum OT
has been proved to be possible under the assumption of only the existence of quantum-

hard one-way functions [38, 39], meaning it requires weaker security assumptions than
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classical OT.

In this chapter, we delve into the subject of quantum oblivious transfer (OT). Our
focus is on several key OT protocols, their security models, and underlying assumptions.
To the best of our knowledge, there is no existing survey that is solely dedicated to
quantum OT protocols. Typically, these protocols are analysed as part of broader surveys
on “quantum cryptography”, resulting in a less in-depth examination of the topic. For
further reference, we have included some comprehensive reviews on the broader subject
of quantum cryptography in [30, 95-101].

The structure of this chapter is as follows: first, we provide a brief overview of the
impossibility results related to quantum OT. Then, we delve into the exposition of some
of the most well-known quantum OT protocols. Finally, we offer a brief overview of OT

protocols that are not covered in detail in this thesis.

3.1 Impossibility results

The emergence of quantum oblivious transfer (QOT) was closely linked to the development
of quantum bit commitment (QBC). In fact, the first proposed QOT protocol (BBCS
[6]) reduces QOT to QBC, which sets a clear distinction between classical and quantum
protocols. While classical bit commitment (BC) can be reduced to classical oblivious
transfer (OT) [57], the reverse is not true using only classical communication [102]. As a
result, Yao’s proof [103] of the BBCS protocol [6] highlights an enhanced characteristic of
quantum communications: the equivalence between QOT and QBC - they can be reduced
to each other - a relationship that is not present in the classical realm.

At the time of the BBCS protocol, researchers aimed to achieve unconditionally secure
quantum oblivious transfer (QOT). This was based on the potential for unconditionally
secure quantum bit commitment (QBC). One year after the proposal of BBCS, Brassard
et al. introduced the BCJL protocol [7]. However, it was later discovered that the protocol
had a flawed proof of its unconditional security [104]. This was followed by independent
proof from Lo and Chau [105] and Mayers [106] that unconditionally secure QBC is actu-
ally impossible. Despite this, the question of unconditionally secure QOT not based on
QBC remained open [95], even after the no-go theorems [105, 106]. Lo eventually proved
that unconditionally secure QOT is also impossible [107]. Lo’s conclusion was drawn as a
corollary of a more general result, which stated that secure two-party computations where
only one party learns the result cannot be unconditionally secure. Lo’s results sparked
a line of research on the possibility of two-sided secure two-party computation, which
was later proven impossible by Colbeck [108] and further extended in subsequent works

[109-111]. For further reading on the impossibility results presented by Lo, Chau and
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Mayers, the reader can refer to the works [102, 112].

Although the impossibility results in quantum cryptography have been widely accepted,
some criticism has been raised regarding their generality [113-116]. Yuen [113] argues that
since there is no known characterization of all possible QBC protocols, it is logically im-
possible to have a general impossibility proof. Nevertheless, subsequent analyses [117-119]
have confirmed the general belief of the impossibility of unconditionally secure QBC. The
criticism was finally put to rest with the proof by Ariano et al. [120] in 2007, which covered
all conceivable protocols based on classical and quantum information theory. Subsequent
works have tried to simplify the proof [121-123] and translate it into categorical quantum
mechanics language [124-126].

In response to these impossibility results, the community has taken two main ap-

proaches:

1. Development of OT protocols under certain assumptions, such as limiting adver-
sary’s technology (e.g. noisy-storage model, relativistic protocols, isolated-qubit

model) or assuming the security of additional functionalities (e.g. bit commitment);

2. Development of OT protocols with a relaxed security definition, where the adversary
is allowed to extract some information about the honest party’s input/output with
a given probability. This approach gives rise to the concepts of weak OT and weak

private database query.

The next section will examine OT protocols that generate a special primitive known

as oblivious keys as an intermediate step.

3.2 BBCS-based protocols

This section investigates protocols that overcome the no-go theorems [105, 106] through
certain assumptions. These protocols are either based on one-way functions, considered
to be quantum-hard [38, 39, 127], or on the adversary’s technological or physical limita-
tions [128-133]. The latter differs qualitatively from the complexity-based assumptions
that post-quantum protocols rely on. Moreover, the security of these protocols is only
dependent on the validity of the assumptions during the protocol execution and remains
intact even if the assumptions are no longer valid later on. This property, known as ev-
erlasting security [134], is a defining feature of quantum protocols compared to classical
cryptography.

We begin by introducing the first quantum oblivious transfer (QOT) protocol and then
examine how it led to the development of two assumption models: Feon—hybrid and the

limited-quantum-storage models.
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3.2.1 BBCS protocol

The concept of “quantum conjugate coding” was introduced by Wiesner in 1983 [135].
It’s a key element in many quantum cryptographic protocols, including quantum oblivious
transfer [6]. The technique is also known as “quantum multiplexing” [136], “quantum
coding” [137], and “BB84 coding” [102]. It involves encoding classical information in two
non-orthogonal (conjugate) bases, leading to a property where measuring in one basis
erases information encoded in the other. So, when bit 0 and 1 are encoded by these two
bases, no measurement is able to perfectly distinguish the states. We will be using the

following bases in the two-dimensional Hilbert space Hs:
e Computational basis: + := {|0), ,|1)_};
o Hadamard basis: x := {|0),,]1), } = {%( 0y, +11), ). ([0}, — |1>+)}.

Throughout this chapter, we simplify the notation by associating the basis set {+, x }
with the binary set {0,1}: + is associated with 0 and x with 1. This allows us to
easily compare strings of bases between parties, i.e. the XOR operation (@) between two
vectors @”,0% € {+, x}" is defined as the XOR operation between the corresponding
binary vectors 8*,0% € {0,1}".

Protocol [6]. The first proposal for a quantum oblivious transfer protocol, known as
Bennett-Brassard-Crépeau-Skubiszewska (BBCS), is shown in Figure 3.1. It utilizes the
quantum conjugate coding technique. The first phase of the BBCS QOT protocol, re-
ferred to as the BB84 phase, consists of Alice encoding a set of qubits that are randomly
measured by Bob. The parties then use Bob’s output bits and Alice’s random elements
to generate a special type of key, known as oblivious key. Alice reveals her bases 8* to
Bob to achieve this. Using the oblivious key as a resource and a two-universal family
of hash functions §, Alice can then obliviously send one of the messages mg, m; to Bob,
ensuring he is only able to know one of the messages. Recall, we use the notation s <—g S

to describe a situation where an element s is drawn uniformly at random from the set S.

Oblivious keys. The term “oblivious key” was first used by Fehr and Schaffner [90] in
reference to random OT. The notion was refined by Jakobi et al. [138] for implementing
private database queries (PDQ). In the BBCS protocol, oblivious keys are used as a
resource to perform OT. Like standard encryption keys, they enable the performance
of OT. In other words, encryption methods consume standard keys and OT methods
consume oblivious keys. The concept of oblivious keys applied to OT protocols was

recently presented by Lemus et al. [139]. We can define it as follows.
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[1BBCS protocol

Parameters: n, security parameter; two-universal family of hash functions § from
{0,132 to {0, 1}%.

Alice’s input: (mg,m;) € {0,1}' (two messages).

Bob’s input: b € {0,1} (bit choice).

BBS8/ phase:

1. Alice generates random bits * <—¢ {0, 1} and random bases 8* +g {+, x }".
Sends the state |wA>0A to Bob.

2. Bob randomly chooses bases 8% < {+, x }" to measure the received qubits.
We denote by 2B his output bits.

Oblivious key phase:

3. Alice reveals to Bob the bases 8” used during the BBS84 phase and sets his

oblivious key to ok® := xA.

4. Bob computes e® = 6% & 6” and sets ok® := xB.

Transfer phase:

5. Bob defines Iy = {i : €2 =0} and I, = {i : €® = 1} and sends the (I, [ye1) to
Alice.

6. Alice picks two uniformly random hash functions fy, fi € §, computes the
pair of strings (sg,s1) as s; = m; ® f,-(okIAbGBi) and sends the pairs (fy, f1) and
(s0,51) to Bob.

7. Bob computes my, = s, © fi(okIBO).

Alice’s output: L.
Bob’s output: my,.

Figure 3.1: BBCS OT protocol.

Definition 7 (Oblivious key). An oblivious key shared between two parties, Alice and
Bob, is a tuple ok := (okA, (ok®, eB)) where ok™ is Alice’s key, ok® is Bob’s key and €® is
Bob’s signal string. €® indicates which indexes of ok™ and ok® are correlated and which
indexes are uncorrelated, i.e. e® = 0 when the corresponding indexes are correlated and

eB = 1 when they are not.

Note that, for some index i, when two index elements okf and oki-3 are correlated,
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okf = ok?. However, when they are uncorrelated, they are drawn independently. This
means that both index elements may either be equal or different. Consider the following
oblivious key ok = (001101101101, (000101001100,101000110001)) as an example. We

can check it is a well-structured oblivious key:

ok : MM (T N (O T
okB : of{o]]c 0110 0| ¢ ok.
eB: |1 1

J

o
o

—
[

It is worth stressing that oblivious keys are independent of the sender’s messages mq, m;
and are not the same as random OT. In fact, as Alice does not know the groups of indexes
Iy and I; computed by Bob after the basis revelation, Alice does not have her messages
fully defined. A similar concept was defined by Kénig et al. [130] under the name of weak

string erasure.

Security. Regarding security, the BBCS protocol provides unconditional security against
dishonest Alice, as she only receives some set of indexes I, from Bob. However, it is
insecure against dishonest Bob, who can carry out a memory attack and obtain complete
knowledge of both messages mg and m; undetected [6]. In the memory attack, Bob delays
his measurements in step 2 until after step 3. This requires quantum memory, which is
why it’s called the memory attack. To mitigate this issue, the authors suggest forcing Bob
to measure the received states at step 2. In subsequent sections, two common approaches
to tackle this security flaw are presented: either by assuming the existence of commitments

or by setting physical constraints that prevent Bob from delaying his measurements.

3.2.2 BBCS in the Fcom—hybrid model

As previously discussed, the BBCS protocol needs Bob to measure his qubits in step 2 for
security. A solution to this issue, as proposed in [6], is the use of a commitment scheme.
This approach results in a Fcom-hybrid model, where Fcom refers to any commitment
scheme (including ideal functionalities)!.

Protocol. The modified BBCS (Figure 3.2) adds a cut and choose step using commitment
scheme COM. In this step, Bob commits to the measurement bases and output bits from
the BB8/ phase. Alice then selects a subset of qubits to verify, and Bob reveals the

corresponding commitments. If no inconsistencies are found, the protocol continues. To

!The notation Fcom is commonly used for ideal functionalities. However, for simplicity, we use
Fcowm to refer to any commitment scheme (including the ideal commitment functionality).
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HBBCS

Foon Protocol

Parameters: n, security parameter; § two-universal family of hash functions.
Alice’s input: (mg,mp) € {0,1} (two messages).
Bob’s input: b € {0,1} (bit choice).

BB8/ phase: Same as in I[IBBCS (Figure 3.1).

Cut and choose phase:

3. Bob commits to the bases used and the measured bits, i.e. COM (BB, a:B),
and sends to Alice.

4. Alice asks Bob to open a subset T" of commitments (e.g. n/2 elements) and

receives {02, 2B}icr.

5. In case any opening is not correct or z2 # 2 for 62 = 02, abort. Otherwise,
proceed.

Oblivious key phase: Same as in IIBBCS (Figure 3.1).
Transfer phase: Same as in IIBBCS (Figure 3.1).

Alice’s output: L.
Bob’s output: my,.

Figure 3.2: BBCS OT protocol in the Fcom—hybrid model.

ensure security, the size of the tested subset must be proportional to n to guarantee Bob’s

measurement with high probability in n.

Security. The security of the modified BBCS protocol has been extensively studied in a
long line of research [6, 37-39, 42, 90, 103, 140-144]. Early studies from the 1990s focused
on analysing security against limited adversaries who only made individual measurements
[141]. Later, Yao [103] showed its security against general adversaries capable of fully co-
herent measurements. However, these initial works [103, 141, 142] lacked a comprehensive
security definition and relied on weak security measures like Collision Entropy and Mutual
Information [145, 146]. In modern quantum cryptography, the protocol’s security is es-
tablished in quantum simulation-paradigm frameworks [37, 42, 90, 130] using a simulator

to show that a real execution is indistinguishable from an ideal, secure execution.

Desirable worst-case security measures for quantum oblivious transfer (QOT) were

applied a decade later [80, 147]. These were based on the concept of min-entropy [145,
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146], Hyin, which, intuitively, reflects the maximum probability of an event to happen. To
prove security against dishonest Bob, one is interested in measuring Bob’s min-entropy
on Alice’s oblivious key ok® given any quantum side information E he may have, i.e.
Hoin (okA|E). Informally, for a bipartite classical-quantum state pxg the conditional min-
entropy Huin(X|E) is given by

Huin(X| )y = — 108 Pyucss(X|E),

PXE

where Pyess(X|E) is the maximum probability the adversary can guess = given all possible
measurements. Damgard et al. [37] proved the stand-alone QOT security using this min-
entropy measure and Fehr and Schaffner’s [90] quantum simulation-paradigm framework.
Their argument to prove the security of the protocol against dishonest Bob can be summa-
rized as follows. The cut and choose phase ensures that Bob’s conditional min-entropy on
the elements of ok™ belonging to I; (indexes with uncorrelated elements) is lower-bounded
by some value that is proportional to the security parameter, i.e. Hmin(ok?1 |E) > nA for
some A > 0. Note that this is equivalent to derive an upper bound on the guessing
probability Pguess(okIA1 |E) < 27 Having deduced an expression for A, they proceed by
applying a random hash function f from a two-universal family §, f <—¢ §. This final step
ensures that f (ok?1 ) is statistically indistinguishable from uniform (privacy amplification
theorem [147-149]). The proof provided by Damgard et al. [37] was extended by Unruh
[42] to the quantum Universal Composable (UC) model with ideal commitments. Now, a

natural question arises:
Which commitment schemes can be used to render simulation-based security?

Commitment scheme. The work by Aaronson [127] provides non-constructive evi-
dence “that collision-resistant hashing might still be possible in a quantum setting”, which

supports the use of commitment schemes based on quantum-hard one-way functions in

HBBCS

Foon: 1t has been demonstrated that any one-way function, including quantum-hard

ones, can be used to construct commitment schemes [150-152]. However, using a commit-

HBBCS

7 does not necessarily
COoOM

ment scheme based on a quantum-hard one-way function in
lead to a simulation-secure protocol. This is due to the difficulty or impossibility of
simulation-based proof due to the nature of the commitment scheme. For more informa-
tion, see [38].

For a commitment scheme to render simulation-based security, the simulator in its
proof must have access to two intriguing properties: extractability and equivocality. Ex-
tractability allows the simulator to obtain the committed value from a malicious com-

mitter, while equivocality enables the simulator to modify the committed value later.
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Despite the counter-intuitive nature of using a commitment scheme where we can violate
both security properties (hiding and biding properties), these properties are crucial for
the scheme’s security. The extractability is used to prove security against the dishonest
sender, and equivocality is used to prove security against the dishonest receiver. There
are proposals in the literature for commitment schemes COM with these properties based

on:

Quantum-hard one-way functions [38, 39];

Common Reference String (CRS) model [42, 91];

Bounded-quantum-storage model [153];

Quantum hardness of the Learning With Errors assumption [37].

Composability. The integration of secure OT executions in secure multiparty protocols
[56] is critical to ensuring security, as improper integration could lead to security breaches.
Although it seems intuitive to assume that a secure OT protocol can be integrated within
more complex protocols, proving this is highly non-trivial as it is not clear a priori under
which circumstances protocols can be composed [154].

To address this challenge, the development of simulation-based security was introduced.
However, simulation-based security alone is not sufficient for composability, as a compos-
ability framework is also necessary [154]. Several composability frameworks have been
proposed in the literature. Fehr and Schaffner [90] proposed a framework for sequential
composition of quantum protocols in a classical environment. Ben-Or and Mayers [155]
and Unruh [42, 156] extended the classical Universal Composability model [86] to a quan-
tum setting, allowing concurrent composability. Maurer and Renner [157] developed a
more general composability framework that accommodates various models of computa-
tion, communication, and adversary behavior. Recently, Broadbent and Karvonen [126]

introduced an abstract model of composable security in terms of category theory. As far

BBCS
Fcom

Fehr and Schaffner model [90] by Damgard et al. [37] and in the quantum-UC model by
Unruh [42].

as we are aware, the composable security of the protocol II has been proven in the

3.2.3 BBCS in the limited-quantum-storage model

In this section, we review protocols based on the limited-quantum-storage model. These
protocols sidestep the no-go theorems by relying on reasonable assumptions about the

storage capacities of both parties. There are two main approaches within this model.
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The first, the bounded-storage model, was introduced by Damgard et al. [128], who
assumed that parties can store only a limited number of qubits. The second approach,
the noisy-storage model, was initiated by Wehner et al. [129], who assumed that parties
can store all qubits but they are unstable, i.e., they have imperfect, noisy storage that
results in some decoherence. Both models force adversaries to use their quantum memories

as both parties have to wait a predetermined time (At) during the protocol.

3.2.4 Bounded-quantum-storage model

In the bounded-quantum-storage (BQS) model, we assume that adversaries can only store
a fraction 0 < v < 1 of the transmitted qubits during the waiting time At. The adversary’s

storage capacity is limited to ¢ = ny qubits. « is referred to as the storage rate.

Protocol. The protocol in the BQS model, IIBBCS is very similar to the BBCS pro-

bags
HBBCS

tocol presented in Figure 3.1. The difference is that both parties have to wait a

predetermined time (At) after step 2. This protocol is presented in Figure 3.3.

HBBCS

bgs  Protocol

Parameters: n, security parameter; § two-universal family of hash functions.
Alice’s input: (mg,m;) € {0,1}' (two messages).

Bob’s input: b € {0, 1} (bit choice).

BBS8/ phase: Same as in I[IBB€S (Figure 3.1).

Waiting time phase:

3. Both parties wait time At.
Oblivious key phase: Same as in [IBB€S (Figure 3.1).

Transfer phase: Same as in IIBBCS (Figure 3.1).

Alice’s output: L.
Bob’s output: m,.

Figure 3.3: BBCS OT protocol in the bounded-quantum-storage model.

Security. In this section, we focus on security against dishonest Bob in the BQS model.

The justification for security against dishonest Alice follows from the original BBCS pro-
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tocol, as detailed in Section 3.2.1.

In the BQS model, the waiting time (At) prevents Bob from holding a significant
portion of qubits until Alice reveals the bases choices 8* used during the BB84 phase.
This is because Bob is forced to measure a fraction of the qubits, causing him to lose
information about Alice’s bases 8”.

Damgard et al. [147] showed that, with overwhelming probability, the loss of informa-

tion about Alice’s oblivious key (ok/}l) is described by the min-entropy lower bound:
A 1
Hypin (0K, [E) > At I—1

Similar to the Fcom—hybrid model, the min-entropy value must be proportional to the
security parameter n. To ensure security, an upper bound on the fraction of qubits that
can be stored by the receiver must be set, i.e. v < i.

Konig et al. [130] improved the upper bound to vy < % and showed that the BQS model
is a special case of the noisy-quantum-storage model. Further, Mandayam and Wehner
[158] presented a protocol that remains secure even when an adversary cannot store any
fraction of the transmitted pulses, using higher-dimensional mutually unbiased bases. In

this latter work, the storage rate v approaches 1 with increasing dimension.

Composability. The security of the protocol HE(];;CS was initially proven by Damgard
et al. [128, 147] under the stand-alone security model [159]. However, this model does
not guarantee the composability of the protocol. The sequential composability was later
established by Wehner and Wullschleger [159] in a simulation-based framework and by
Fehr and Schaffner in a sequential composability framework.

Unruh [153] extended the quantum-UC framework and combined it with the BQS
model to develop BQS-UC security. In this framework, composability is ensured while
keeping track of the quantum memory bound used by the machines. Under this frame-
work, Unruh follows a different approach as he does not use the protocol HE(?SCS (Fig-
ure 3.3). Unruh presented a BQS-UC secure commitment protocol and combined it with
the TIBBCS protocol to obtain a constant-round protocol that emulates any two-party

Fcom
functionality in a BQS-UC secure manner.

3.2.5 Noisy-quantum-storage model

The noisy-quantum-storage (NQS) model is a generalization of the bounded-quantum-
storage (BQS) model. In the NQS model, the adversary is allowed to retain any fraction
v of the transmitted qubits, including the case where v = 1. However, the adversary’s

quantum memory is assumed to be noisy, meaning that qubits cannot be stored for a
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certain amount of time (At) without undergoing decoherence [130].

Mora formally, the decoherence of qubits in the noisy storage can be described by a
completely positive trace-preserving (CPTP) map, also known as a channel, C : P(H;,) —
P(Hout)- The Hilbert space of the stored qubits before and after the storage period (At)
is represented by Hi, and Hoyu, respectively. P(H) represents the set of positive semi-
definite operators with unitary trace acting on a Hilbert space H. The channel C takes a
quantum state p € H;, at time ¢ and returns a quantum state p’ € Hoy at time ¢ + At.

With this formulation, it’s clear that the BQS model is a subset of the NQS. In BQS,
the channel takes the form C = 1%, where the storage rate v is the fraction of transmitted
qubits stored in the quantum memory. The most commonly studied scenario is restricted
to n—fold quantum channels (C = N'®"™), where the channel N is applied independently
to each stored qubit [129, 130, 160]. In this scenario, specific security parameters can be

derived.

Protocols. The BQS model protocol T2 is considered secure in the NQS model [160].
However, the first proposed protocol analysed in this general NQS model was developed
by Konig et al. [130] and draws inspiration from classical OT in the bounded-classical-
storage model [161-163]. Konig et al.’s protocol uses two key techniques in its classical
post-processing phase: encoding of sets and interactive hashing. The encoding of sets
involves an injective function Enc : 0,1° — T, where T is a set of all subsets of [n] with
size n/4. The interactive hashing is a two-party protocol between Alice and Bob where
Bob inputs a message W' and both parties receive messages W} and W7, with one of them
equal to W*, but with the index unknown to Alice and the choice randomly determined.

In this section, we present the naive version of the protocol introduced by Konig et al.

in [130]. Although both IIF2®S and IIP2CS are distinct, we maintain a similar notation

for ease of comparison. The protocol HE&CS is outlined in Figure 3.4. The first two
phases (BB84 and Waiting time) are the same as in IIP2CS (Figure 3.3).

After the Waiting time phase, both parties generate a resource similar to oblivious
keys, known as weak string erasure (WSE). Alice holds the entire key ok”, while Bob
holds one-fourth of it, represented by the tuple (I ,okB = ok/}), where I is the set of
indices they measured in the same basis and has size |I| = 7. Using a method to encode
sets into binary strings and interactive hashing, both parties generate two index subsets, I,
and I;. These subsets, along with two 2-universal hash functions, allow Alice to compute
her output messages (mg, m1) and Bob to obtain his bit choice b and the corresponding

message my,. For more details on encoding sets and interactive hashing, refer to [162] and

[163).
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Naive IIP2S protocol

Parameters: n, security parameter; § two-universal family of hash functions.

Alice’s input: L.
Bob’s input: 1.

BB84 phase: Same as in [IBBCS (Figure 3.1).

Waiting time phase: Same as in HE(];CS (Figure 3.3).

Weak String Erasure phase: Similar to Oblivious key phase of ITIBBCS (Figure 3.1).

4. Alice reveals to Bob the bases 8* used during the BBS8/ phase and sets her
oblivious key to ok® := xA.

5. Bob computes e = 6% @ *. Then, he defines I = {i : €8 = 0} and sets

B._ ,.B
ok” = x7.

6. If |[I| < n/4, Bob randomly adds elements to I and pads the corresponding
positions in ok® with 0s. Otherwise, he randomly truncates I to size n /4, and
deletes the corresponding values in ok®.

Interactive hashing phase:

7. Alice and Bob execute interactive hashing with Bob’s input W to be equal
to a description of I = Enc(WW). They interpret the outputs Wy and W, as

descriptions of subsets Iy and I of [n].
Transfer phase:
5. Alice generates random fy, fi —s § and sends them to Bob.
6. Alice computes the pair of messages (mg, my) as m; = fi(okIAi).
7. Bob computes b € {0, 1} by comparing I = I, and computes m; = f,(ok?).

S output: (mg,m;) € {0, 1} (two messages).
R output: (b, my;) where b € {0,1} (bit choice).

Figure 3.4: BBCS OT protocol in the noisy-quantum-storage model.

Security. The first proofs in the NQS model for the original BQS protocol (Figure 3.3)
were developed by Schaffner, Wehner, and Terhal [129, 164]. However, these initial works
only considered individual-storage attacks, in which the adversary treats all incoming

qubits equally. Schaffner later proved [160] the security of ITJ2°S against arbitrary attacks
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in the more general NQS model defined by Kénig et al. [130].

In the general NQS model, the security of both protocols HE(?SCS and HE?SCS (Fig-
ures 3.3 and 3.4) against a dishonest receiver relies on setting a lower-bound for the
min-entropy of the “unknown” key okIA1 _, given the receiver’s quantum side information,
represented by the output of the quantum channel C applied to the received states. More
formally, one has to lower-bound the expression H;, (okIA1 IC (Qm)), where Q;, denotes
the subsystem of the received states before undergoing decoherence. This lower-bound,
proven in [130], depends on the receiver’s maximal success probability PS¢ . (n) of correctly
decoding a randomly chosen n-bit string = € {0, 1}" sent over the quantum channel C.

For particular channels C = N®”, Konig et al. [130] concluded that security in the

NQS model can be obtained in case

<1
CN -V —
N 27

where ¢y is the classical capacity of quantum channels N satisfying a particular property

(strong-converse property).

3.2.6 Experimental attacks

While QKD and QOT protocols are proven to be secure in theory, their experimental
implementations may contain loopholes that undermine their security. The mismatch
between theory and practice stems from the fact that theoretical proofs often assume the
honest parties’ physical apparatus is invulnerable to hacking. However, flaws in both the
generation and measurement of qubits can be used to carry out various quantum attacks.
For a comprehensive overview of QKD attacks and countermeasures, we refer the reader
to the review articles by Lo et al. [165] and Pirandola et al. [166]. In this context, we
briefly examine the impact of such attacks on QOT protocols based on BBCS.

QOT attacks

It is important to stress that there is a fundamental difference between QKD and QOT
protocols. In QKD, the parties have a mutual trust and can work together to identify
an external attack, while in QOT, the parties are inherently distrustful of each other.
External attacks in QKD presume that the attacker has physical access to the quantum
channel and can launch a man-in-the-middle attack. On the other hand, QOT protocols
are inherently linked through a quantum channel, thus QOT attacks may require less
effort to launch as the attacker is already utilizing the channel.

According to the security requirements of QOT protocols, it is crucial for both Alice and

Bob to maintain their respective privacy. In particular, Alice should not know Bob’s bit b,
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and Bob should not have knowledge of m;_;. The security of BBCS-based QOT protocols
depends on the security of oblivious keys, which requires Alice not to have information
about the set of indexes known to Bob (i.e. €®), and Bob having limited knowledge of
Alice’s key (i.e. okA). These two pieces of information can be easily obtained by the
adversary if they have access to the quantum bases used by either party (i.e. 6* or 68).

For instance, Alice can compute e by taking the XOR of 8% and 6*, while Bob can
obtain ok® by measuring all the qubits with Alice’s bases @”. Therefore, the objective of
the adversary is to gain information (or control) about the set of bases used by the other
party through their quantum channel.

Two common attacks in quantum systems are faked-state attacks (FSA) and trojan-
horse attacks (THA) [167, 168]. FSA targets measurement apparatus only, while THA can
target both preparation and measurement apparatus. In a prepare-and-measure setting,

FSA can only be executed by Alice, while THA can be executed by either party. In this

BBCS and HBBCS

context, let’s examine how these two attacks can be applied to both 1T Foont

BBCS
ngs

We denote by 8% < Agox(J) Alice’s quantum hacking procedure (Aqox(.J)) that breaks

protocols. The attacks on II follow the same reasoning but the notation vary slightly.

the security requirements of oblivious keys and provides her with Bob’s bases (é?) from
index set J. Similarly for Bob, i.e. 8% < Bgor(J).

g attack

Alice’s input: set of indexes J of size q.

1. Alice performs some faked-state attack {9}3} — Agok(J) where 0? €
. jeJ
{+, x} or 9}3 = 1.

2. If 3j € J such that 6% # L.

(a) b=0if j € I, ;
(b) b=1ifj & I.

3. Otherwise, sets b= L.

Alice’s output: b.

Figure 3.5: Alice faked-state attack to ITpeC® and IIEBSS protocols.

FSA attacks. The attacks described by Jain et al. [169] involve well-crafted optical sig-
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nals that allow Alice to manipulate Bob’s measurement outcomes. When Alice and Bob’s
bases coincide, Bob’s detector clicks. Conversely, when their bases are orthogonal, Bob
does not detect an event (_L). Alice exploits this by forcing Bob to only use measurements
where their bases coincide, thus gaining full knowledge of Bob’s bases. By discarding the
indexes corresponding to no detection events and using the others in the protocol, Alice
can easily distinguish between Iy and I;.

It’s worth noting that Alice only needs to successfully manipulate one measurement
round in order to guess one basis, which occurs with high probability after a sufficient
number of attacks ¢. The probability of success for Alice in ¢ rounds is calculated as

follows:

1 q
P[Successful attack by Alice in ¢ rounds] =1 — (5) :

With knowledge of Bob’s basis, Alice can determine to which set (Iy or I;) a corre-
sponding index (j) belongs. As Bob computes his message my, using the set where their
basis coincides and Alice computes both messages my and m; using both sets, Alice can
determine Bob’s message m; by identifying which message came from the set to which j

belongs. The attack IIpg, against both ITESCS and IT2BCS is summarized in Figure 3.5.

1554 attack

Alice’s input: one index element, j.

1. Alice performs some trojan-horse attack {5;3} — Aqok(7) where 5;3 e {+, x}.

2. Alice compares the received basis 9;3 with her corresponding base 9?. Denote
by é? = éf ) QJ-A.

3. Upon receiving [, from R:

(b) b=1—28ifj ¢ I,

Alice’s output: b.

Figure 3.6: Alice trojan-horse attack to IIP2CS and ITBBSS protocols.

THA attacks. These attacks are executed by sending bright optical signals into the

target equipment and analysing the different reflections to determine the bases in use.
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Similarly to the FSA, Alice only needs to identify one of Bob’s bases to compromise
the system. By comparing her basis with Bob’s basis for that particular round, she can
determine Bob’s bit b. This attack is depicted in Figure 3.6 as Il

Bob’s THA attack, on the other hand, is more challenging. He must not only accurately
guess all of Alice’s bases but also properly measure the corresponding qubits after revealing
the sender’s bases. This task is much more difficult without the assistance of quantum

memories. Bob’s attack is illustrated in Figure 3.7 as g .

18,4 attack

Parameters: n, security parameter..

1. Bob performs some trojan-horse attack to all qubits sent by Alice, i.e.
{5{*} . & Byok([n]) where 02 € {+, x}.
i€[n

2. Bob measures the received states |wA> oa With the correct bases, {éZA} -
€[N

Bob’s output: ok”.

HBBCS

BBCS
bgs I

Foon Protocols.

Figure 3.7: Bob trojan-horse attack to and

Countermeasures

We have seen how two well-known quantum hacking techniques can undermine the secu-
rity of oblivious keys and, consequently, the security of oblivious transfer. Fortunately,
there are countermeasures available to prevent these quantum hacking techniques from
compromising the security of oblivious keys and, in turn, oblivious transfer. These coun-
termeasures can be classified into two categories: security patches designed to address
specific vulnerabilities and novel protocols that allow for the use of faulty devices.
Regarding the two presented possible attacks, it is commonly possible to implement
security patches that prevent them. The FSA attack can be mitigated by placing an
additional detector (watchdog) at the entrance of the receiver’s measurement device to
monitor for malicious radiation that blinds the detector. On the other hand, the THA
attack can be prevented by using an isolator at the entrance of both parties’ devices.
However, as noted by Jain et al. [169], these countermeasures may not be foolproof in
practice as they only offer perfect protection if the isolators and watchdogs are effective

at all relevant frequencies.
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The study of security patches for each technological vulnerability is an active area of
research [170]. However, this approach requires a challenging task of making experimen-
tal implementations match ideal protocols, leading to potential security vulnerabilities.
Instead, it is more advantageous to develop protocols that already account for faulty
devices and are robust against quantum hacking attacks. This is the objective of device-
independent (DI) cryptography, where quantum devices are treated as black-boxes and
the assumption that they cannot be controlled by the adversary is dropped [171, 172].
This section provides a brief overview of the current advancements in DI protocols. For

a more comprehensive understanding, refer to the original works.

Kaniewski-Wehner DI protocol [173]. The first DI protocol for QOT was proposed
by Kaniewski and Wehner [173] and further improved by Ribeiro et al. in [174]. The
protocol was proved to be secure in the noisy-quantum-storage (NQS) model as it uses

the original NQS protocol IIBBCS (Figure 3.4) for trusted devices.

ngs

The protocol considers two scenarios. The first assumes that the devices have a mem-
oryless behavior every time they are used, which enables the devices to be tested in-
dependently from the actual protocol, resulting in a DI protocol with two phases: a
device-testing phase and a protocol phase. Under this memoryless assumption, the pro-
tocol is proven to be secure against general attacks using proof techniques from [130].
The second scenario removes the memoryless assumption, making it unrealistic to test
the devices in advance, as their behavior can change. As a result, the structure of the
initial DI protocol must be altered, interweaving the rounds of the device-testing phase

with the rounds of the protocol phase.

As is typical in DI protocols, the DI property arises from a violation of Bell inequalities
[175] that ensures a certain level of entanglement. In the protocol phase, the entanglement-
based variant of HE(?SCS must be used, with Alice preparing maximally entangled states

Ot DT|, where |®F) = -L(|00) + |11)). The Bell inequality used in this case is based on
V2
the Clauser-Holt-Shimony-Horne (CHSH) inequality [176].

Broadbent-Yuen DI protocol [177]. Recently, Broadbent and Yuen [177] proposed
a DI protocol in the BQS (bounded-quantum-storage) model using HE(];’SCS (Figure 3.3).
Like the work of Kaniewski and Wehner [173], the protocol is secure under the memoryless
assumption, but with a difference. Unlike Kaniewski and Wehner’s work, which relies on
the violation of Bell inequalities [175] for security, Broadbent and Yuen’s protocol does not
require non-communication assumptions. Instead, it employs a recent self-testing protocol
[178, 179] that is based on the hardness of the Learning with Errors (LWE) problem [180].

This approach allows the protocol to be secure without relying on the violation of Bell
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inequalities.

Ribeiro-Wehner MDI protocol [181]. In the work by Ribeiro and Wehner [181], an
OT protocol in the measurement-device-independent (MDI) regime [182] was developed to
tackle the technological difficulties in implementing DI protocols [183]. The MDI regime
assumes that the measurement devices are untrusted while the sources are trusted. This
protocol was motivated by the lack of security proof in the DI setting and the vulnerability
of non-device-independent protocols to attacks on the measurement devices [184]. The
presented protocol follows the research line of Konig et al. [130] and is also proved to be
secure in the NQS model.

The protocol starts with a weak string erasure (MDI-WSE) phase, similar to the ap-
proach taken by Konig et al. [130]. In this phase, Alice and Bob send random states
|wA> on and ‘azB> oe 10 an external agent who performs a Bell measurement and announces

the result. Bob adjusts his bit to match Alice’s based on the announcement. Subse-

BBCS
ans

quently, both parties proceed with the protocol (Figure 3.4) from the waiting
time phase onward. A similar protocol was proposed by Zhou et al. [185] which includes

error estimation to enhance security.

3.3 Conclusion

Since the proposal of quantum OT 40 years ago, active and fruitful research on this topic
has deepened our understanding of the limits and advantages of quantum cryptography. It
was first proved that two fundamental primitives, bit commitment and oblivious transfer,
are equivalent in the quantum setting, a relation that does not hold classically. Unfor-
tunately, it was also proven that both primitives cannot be unconditionally secure in the
quantum setting, matching the impossibility results in the classical setting. However, this
equivalence in the quantum setting implies that quantum OT requires weaker security
assumptions than classical OT. Quantum OT can be implemented solely with quantum-
hard one-way functions, whereas classical OT requires at least one-way functions with
trapdoors. This makes classical OT potentially more vulnerable to quantum computer
attacks and tendentiously less computationally efficient. Additionally, some quantum OT
implementations benefit from an important feature known as everlasting security, which
does not have a classical counterpart. It states that even if the security assumptions lose
validity after the protocol execution, the security of the protocol is not compromised. In
other words, quantum OT implementations are considered unconditionally secure after
the protocol execution.

In this chapter, we have discussed some of the most common assumptions used to

45



implement secure quantum OT. Hybrid approaches are based on both quantum physical
laws and computational complexity assumptions. Limited-quantum-storage approaches
offer secure solutions as long as the technological limitations are met during protocol
execution. In the next chapter, we will compare the security and efficiency of these

quantum OT protocols with their classical counterparts.
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Chapter 4

Classical and quantum oblivious

transfer

Secure multiparty computation (SMC) has the potential to revolutionize data analysis
and computation by enabling multiple parties to compute any function while preserving
the privacy of their inputs. The security and efficiency of SMC protocols rely heavily on
the security and efficiency of oblivious transfer (OT). Thus, it is crucial to understand

the advantages and drawbacks of both classical and quantum OT protocols.

In this chapter, we begin by examining the security and efficiency of classical OT
protocols. Then, we compare these classical protocols with their quantum counterparts.
However, it is important to note that classical and quantum approaches utilize different
information medium and that classical technology is more established than quantum tech-

nology. These factors raise questions about the validity of comparing the two approaches.

In Chapter 3, we reviewed various quantum OT protocols and focused on BBCS-based
QOT protocols. These protocols offer a practical solution for performing OT within SMC
while being resistant to quantum computer attacks. The protocols are divided into two
separate phases: the oblivious key (precomputation) phase and the transfer phase. The
oblivious key phase uses quantum technologies and is independent of the parties’ input
elements (mg, m; and b), while the transfer phase only requires classical communication
and is based on the precomputed elements (oblivious keys). It can be argued that the
precomputation phase is not so hungry-efficient as the transfer phase, as it is independent
of the parties’ inputs and can be performed well ahead of an SMC execution. The classical
OT protocols can also be divided into these two phases, allowing for a comparison of the
transfer phase between quantum and classical approaches. Additionally, no concurrent

use of quantum equipment is necessary during the SMC execution.
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4.1 Classical oblivious transfer

Let us start by presenting the Bellare-Micali (BM) OT protocol [2] based on public key
Diffie-Hellman. This exposition aims to shed some light on the issues related to classical
OT implementations. The security and efficiency issues explored in this section also apply

to most of the major classical protocols [13, 93, 94].

We consider G, to be a subgroup of Z; with generator g and order ¢, where p is prime
and p = 2¢+ 1. Also, we assume public knowledge on the value of some constant C' € G,.
This constant guarantees that Bob follows the protocol. Also, for simplicity, we assume
the protocol uses a random oracle described as a function H. For comparison purposes
with quantum OT version presented in Chapter 3, we split the BM OT protocol into
two phases: precomputation phase and transfer phase. The first phase sets the necessary
resources to execute the oblivious transfer in the second phase. The BM OT protocol

I1gys is shown in Fig. 4.1.

[1g)s protocol

Alice’s input: (mg,m;) € {0,1}' (two messages).
Bob’s input: b € {0,1} (bit choice).

(Precomputation phase)

1. Bob randomly generates k € Z, and computes g*.

2. Alice randomly generates 7, r; € Z, and computes ¢" and ¢".
(Transfer phase)

3. Bob sets pk, := g*. Also, he computes pkpgr = C - pkb_l.

4. Bob sends both public keys (pk,, pk;) to Alice.

5. Alice checks if (pk,, pk;) were correctly generated by computing their product:
C = pky x pk;.

6. Alice computes and sends to Bob the two tuples: Ey = (¢, H(pkg”) & my)
and E; = (g™, H(pki') @ my) for some hash function H.

7. Bob is now able to compute H (pk,’) and recover m,.

Alice’s output: L.
Bob’s output: m,.

Figure 4.1: Bellare-Micali classical OT protocol divided into two phases [2].
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4.1.1 Security issues

The security of the Bellare-Micali (BM) OT protocol depends on both concealing and
obliviousness properties. The concealing property is maintained as Bob does not send
to Alice any information that reveals his input bit choice b. The obliviousness property,
on the other hand, relies on Alice’s ability to keep the randomly generated elements r
and r; confidential. This property is compromised if Bob is able to compute the discrete
logarithm of g™ (i = 0,1) (discrete logarithm problem).

The hardness of the discrete logarithm problem on cyclic groups is fundamental to
several other protocols, making it imperative to understand its limitations. However, it
is still unproven whether there exists a polynomial-time algorithm that can compute r
from ¢" (r € Z,) in a general cyclic group G, with generator g and order ¢g. The security
of the BM OT protocol assumes that Bob has limited computational power and is unable
to calculate the discrete logarithm of a generic number.

Although the generic discrete logarithm problem is not known to be tractable in
polynomial-time, there are specific cases where it is possible to compute it efficiently.
Indeed, the security of the discrete logarithm problem in cyclic groups can be compro-
mised if the structure of the group is not robust enough. For instance, if a prime p is
randomly generated without ensuring that p — 1 contains a big prime p, in its decompo-
sition, it is possible to use a divide-and-conquer technique [186] along with some other
methods (Shank’s method [187], Pollard’s rho [188], Pollard’s lambda [188]) to solve the
discrete logarithm problem. The efficiency of the algorithms depends on the size of py; the
smaller py, the faster the algorithm can solve the discrete logarithm problem. To avoid
these attacks, it is recommended to use safe primes, i.e., primes of the form p = 2¢ + 1
where ¢ is also prime. However, finding safe primes is computationally more expensive
compared to finding regular primes.

The size of the prime numbers is also an important consideration. In [189], it is
reported that the number field sieve algorithm can compute the discrete logarithm in a
512-bit group after a week-long precomputation and in just one minute. So, by following
this method, after a week-long computation, Bob would be able to find both messages
mg and m; of the BM OT protocol in one minute. In an SMC scenario based on the Yao
approach [23], where each OT performed corresponds to one input bit of Alice and the
chosen group parameters are fixed, Bob would be able to get the keys corresponding to
both 0 and 1 bit and, consequently, he would be able to discover all Alice’s inputs. Hence,
at the expense of efficiency, it is necessary to use large prime numbers (2048-bit or larger)
that are resistant to these classical attacks.

We have just seen specific examples where it is possible to break the security of the OT

protocol using classical techniques. However, the larger threat to the security of OT and
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many other asymmetric cryptographic protocols such as RSA, elliptic-curve cryptography,
and Diffie-Hellman key exchange is posed by quantum computers, which can efficiently
solve the general discrete logarithm problem. This was first demonstrated by Peter Shor in
his 1995 publication of a quantum algorithm that can solve both the prime factorization
and discrete logarithm problems in polynomial time [29]. Therefore, in the BM OT

protocol Bob would be able to perform two attacks with the help of a quantum computer:

Quantum attack 1:

1. Bob computes the discrete logarithm of ¢g"®! received from Alice using Shor’s algo-

rithm, i.e. rpg; = log, g"o.

2. Bob is then able to compute H((¢7)¥) = H(pk;’) and H(pk,') and get both

messages m; and my_q.
Quantum attack 2:

1. Bob computes the discrete logarithm of pk,s;, with the Shor’s algorithm, i.e. s =
logg PRy -

2. Bob is then able to compute H ((¢™)*) = H(pk;’) and H ((g"®')*) = H (pk,;5') and

get both messages my;, and myg;.

The research literature mainly presents two approaches to address this issue: develop-
ing protocols with assumptions about the computational power of quantum computers,
or developing protocols that utilize quantum technology. The former approach, known as
post-quantum cryptography [190], often requires more demanding public-key cryptogra-
phy protocols due to the computational assumptions employed. Notably, these assump-
tions are yet unproven and have only been subject to a few years of scrutiny, making
them vulnerable to attack in the near future. The latter approach, referred to as quan-
tum cryptography [166], provides solutions without relying on asymmetric cryptography,
but significantly increases the cost of the necessary technological equipment. It’s crucial
to note that quantum protocols do not experience the intercept now, decipher later attack
(everlasting security) because their security is based on quantum theory. Conversely, this

type of attack is always a possibility in protocols that rely on computational assumptions.

4.1.2 Efficiency issues

In the previous section, we highlighted that increasing security through mitigation pro-
cesses always has an impact on efficiency. This is because generating secure primes is

more demanding, larger exponents and prime modules result in heavier computations,
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and post-quantum solutions generally require stronger computational assumptions, lead-

ing to increased computational complexity.

Now, let’s examine the efficiency limitations of the BM OT protocol. To start, we
will consider the operations used in the protocol, including random number generation,
modular multiplication, modular inversion, modular exponentiation, hash function eval-
uation, and XOR operation. Of all these operations, modular exponentiation is the most
demanding, meaning that the complexity of BM OT is heavily influenced by the com-
plexity of modular exponentiation. The number of modular exponentiations performed

in each phase is summarized in Table 4.1.

Alice Bob
Precomputation phase 2 1
Transfer phase 2 1

Table 4.1: Number of modular exponentiations in the BM protocol for each phase.

One of the most efficient ways to perform general modular exponentiation with n-
bit numbers is to use a combination of square-and-multiply algorithm and Karatsuba
multiplication. The former has a complexity of O(n) multiplications, while the latter

has a complexity of O(n!58).

The overall complexity of this method is O(n??®) n-bit
operations [191]. To overestimate the rate of OT generation, we’ll consider the time (in
CPU cycles) required to perform all modular exponentiation operations. The rate can be

calculated using the following expression:

(M

-1
X Noreap ) 4.1
Ccycles i ( )

where Cpeqp is the number of CPU cycles required to perform one modular exponen-
tiation, Cyyeres is the CPU frequency (number of cycles per second), and Ny, is the
number of modular exponentiations performed in the OT implementation. It’s important
to note that this expression only provides an overestimation, as it depends on both the
implementation of the modular exponentiation operation and the CPU frequency being
used.

Given a standard CPU operating at 2.5 GHz (Ceyees = 2.5 X 10% cycles per second)
and an efficient implementation of modular exponentiation (Cj,eqp ~ 400,000 CPU cycles)
[192], the BM OT protocol could perform at most ~ 1041 BM OTSs per second, as shown
in Fig. 4.2. This, however, is a loose overestimation of the number of OTs per second, as

it only takes into account the computational complexity of modular exponentiation and
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Figure 4.2: Plot of expression (4.1) on the overestimation of OT rate against the number
of modular exponentiation operations required per OT.
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assumes that other operations have minimal impact on computation time. Therefore, the

actual OT rate must be lower.

For comparison, a study in [3] reported that it takes around 18 ms to generate a Naor-
Pinkas OT [13] which requires 5 modular exponentiations, yielding a rate of 56 OTs per
second. These OT rates pose a serious challenge for SMC protocols that rely on OT,
such as the Yao SMC protocol [23]. The Yao protocol uses boolean circuits to compute a
desired functionality privately and requires half the number of input wires as the number
of required OTs. Using the rough OT rate estimation, the OT phase of the Yao protocol
with a 32,000 input boolean circuit would take at least 16 seconds, and around 2 minutes
and 23 seconds using Naor-Pinkas OT rate. These execution times can become impractical
in deployment environments that require several rounds of circuit evaluation and require
higher OT rates.

4.1.3 OT extension protocols

To improve the efficiency of OT, one potential solution is to replace the computation-
intensive asymmetric cryptography with more efficient symmetric cryptography. Sym-
metric cryptography has the advantage of being faster than asymmetric cryptography. In
addition, all known quantum attacks to symmetric cryptography based on the Grover’s
algorithm only provide a quadratic advantage over classical approaches, which can be mit-
igated by doubling the size of the symmetric keys [190]. However, despite its efficiency,
symmetric cryptography is not enough for OT because it does not meet the asymmetric
cryptographic assumptions required by Impagliazzo and Rudich’s result [28]. Hence, OT

cannot be performed solely with symmetric cryptography methods.

To overcome the limitations imposed by Impagliazzo and Rudich’s result [28] on the use
of solely symmetric cryptography for OT, researchers have developed hybrid protocols that
combine both symmetric and asymmetric cryptography. Beaver [193] introduced the idea
of extending the number of OTs by using symmetric cryptography, once a small number
of base OTs are established using asymmetric cryptography. Although Beaver’s original
protocol was inefficient, it paved the way for more efficient implementations [3, 194-197].
Currently, one of the most efficient protocols can generate about 10 million OTs in 2.62
seconds [3]. The security of these protocols mainly relies on the security of the base OT
protocol and the use of quantum secure symmetric tools. However, it’s important to note
that the protocol analysed in Section 4.2.3 [3] is not secure against malicious parties and
should only be used in a semi-honest environment. To ensure security against malicious
parties, extra consistency check phases are necessary, increasing the complexity of the

protocol [4, 197], as discussed in Section 4.2.3.
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4.2 Oblivious transfer complexity analysis

In this section, we compare the complexity of the transfer phase of an optimized version
of the BBCS-based QOT protocols (H?ggj and HE(?SCS) presented before and several well

known classical protocols. We start by explaining the optimized version..

4.2.1 Optimization

Recall that both ITEBSS and HEE;CS can be divided into two phases: the oblivious key
distribution phase (we also call it a precomputation phase) and the transfer phase. It is
interesting to note that both protocols follow the same steps in the transfer phase. We
present the transfer phase of both protocols in Figure 4.3. We slightly rewrite the protocol
by using only one hash function (H describes a random oracle) instead of two random
hash functions fy and f;. This is done for comparison purposes and because, in practice,

H is implemented as a specific hash function, such as SHA.

IIBBCS protocol

Alice’s input: (mg,m;) € {0,1}' (two messages).
Bob’s input: b € {0,1} (bit choice).

Precomputation phase: Alice and Bob generate an oblivious key (okA. (okB.eB))
: BBCS ¢ in Fiomr . BBCS .
according to the corresponding procedure. Iz~ as in Figure 3.2 and I =" as
in Figure 3.3.

Transfer phase:

5. Bob defines Iy = {i : €2 = 0} and I} = {i : e = 1} and sends the pair
(Ib, Ib@l) to Alice.

A

6. Alice computes the pair of strings (so, s1) as s; = m; & H(okj, .

to Bob.

) and sends
7. Bob computes my, = s, & H(oky,).

Alice’s output: L.
Bob’s output: m,.

Figure 4.3: Transfer phase of BBCS-based QOT protocols in the Fcom—hybrid model
and bounded-quantum-storage model.

In the first communication round of the protocol in Figure 4.3, Bob sends two sets

(Ip, Ipe1) to Alice (Step 5). This can be optimized by only sending one set (,), as Alice
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can determine its complement (I_b = Iye1) with just one set. This leads to the optimized
protocol (II8BCS) shown in Figure 4.4. This optimization results in lower bandwidth

requirements compared to the original transfer phase.

The size of the sets can be identified by a symmetric security parameter s, as they
define the keys (okj,, i = 0, 1) used in the hash function H. For comparison, we consider
k = 128. Also, the messages mg and m; can be viewed as garbled circuit keys, with a size
of [ = 128,192 or 256. If we assume [ ~ k, the same number of bits are required. This
means that in Step 5, Bob only needs to send [ bits to Alice, resulting in a reduction of

one fourth in the number of bits sent during the transfer phase.

II8BCS protocol

Alice’s input: (mg,mq) € {0, 1} (two messages).
Bob’s input: b € {0,1} (bit choice).

Precomputation phase: Alice and Bob generate an oblivious key (ok*, (ok®,eB))
e Tine nrocedire TIBBCS 4c in Fioyre . BBCS .
according to the corresponding procedure. IIZ>% as in Figure 3.2 and I o~ as
in Figure 3.3.

Transfer phase:

5. Bob defines Iy = {i : €2 = 0} and I; = {i : e = 1} and sends only I} to
Alice.

6. Alice computes the pair of strings (sg,s1) as s; = m; & H (ok?b@i) and sends
to Bob.

7. Bob computes my, = s, @ H(ok},).

Alice’s output: L.
Bob’s output: m,,.

Figure 4.4: Transfer phase of BBCS-based QOT protocols in the Fcom—hybrid model
and bounded-quantum-storage model.

To fairly compare the transfer phase of the IIBBSS protocol with other classical proto-
cols, we divide classical protocols into precomputation and transfer phases. All steps that
are independent of the messages (mg and m;) and the bit choice (b) are considered part of
the precomputation phase, while others are included in the transfer phase. The transfer
phase is more important to optimize as it is executed during the Yao GC protocol, while

the precomputation phase can be performed beforehand.

We stress we will only compare the complexity of different protocols’ transfer phase
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because their precomputation phase rely on different technologies. Since quantum tech-
nologies are still in their infancy and constantly evolving, it is difficult to compare the
efficiency with classical approaches. However, the oblivious key phase of the IIBBCS pro-
tocol has a linear time complexity in all its security parameters, as shown by Lemus et al.
[139]. The time complexity of IIE2SS is O(k(2l + t)), where & is the security parameter

of the hash-based commitments, 2/ is the number of qubits used to generate the oblivious

keys, and ¢ is the number of testing qubits.

4.2.2 Classical OT

In section 4.1, we divided the well known Bellare-Micali protocol in these two phases and
we observed that it uses three exponentiations during the transfer phase. In Table 4.2,
we present the number of required modular exponentiations and communication rounds
during the transfer phase of four well known classical protocols that have their security

based on the computational hardness of the Discrete Logarithm problem.

Protocol Exponentiation Comm. rounds
EGL [93] 3 2
BM [2] 3 2
NP [13] 2 2
SimpleOT [94] 1 2

Table 4.2: Number of modular exponentiation operations and communication rounds
executed during the transfer phase of four classical protocols.

From Table 4.2, we see that the most efficient protocol (SimpleOT [94]) still requires
one exponentiation operation and 2 communication rounds. From the above formula (4.1)
and setting Ceyies = 2.5 X 107, Crezp = 400000 and Np,eqpp = 1, we get an overestimation
of around 6000 OT per second. Comparing with the rate achieved by OT extension
protocols (10 million OT in 2.62 s), it is still very inefficient.

This means current classical OT protocols have a computational complexity limited by
O(n?38) bit operations due to modular exponentiation. The ITBBS protocol only depends
on simple bit operations (XOR, truncation and comparison), meaning its computational
complexity is linear in the length of the messages O(n).

Despite their security guarantees, none of the classical OT protocols discussed are
secure against quantum computer attacks. To achieve this level of security, post-quantum

approaches must be adopted, which may result in higher computational demands [198].
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For example, the use of Kyber key encapsulation based on the module learning with
errors (M-LWE) problem [199] in a LAN network results in a rate of only 41 OT per
second (24 ms per OT), as reported in [200]. This rate is even lower than the rate of
56 OT per second achieved by the Naor-Pinkas protocol [13] reported in [3]. The NTRU
post-quantum encryption system [201] was used in [202, 203] to develop a 1-out-of-n OT,
which was compared with the SimpleOT protocol [94]. Although the individual sides are
more efficient in NTRU OT, the overall protocol is still less efficient, with a rate of 728
OT per second (1.372 ms per OT) for the highest security level compared to 1375 OT per
second (0.727 ms per OT) using SimpleOT. It is important to note that these protocols
are still vulnerable to intercept now, decipher later attacks as they rely on computational
assumptions that are only believed to be secure against quantum computer attacks and

not proven.

4.2.3 OT extension

As we explained in section 4.1.3, several techniques based on an hybrid symmetric-
asymmetric approach were developed as a way to increase the OT execution rate. These
techniques use a small number x (= 128) of base OT protocols (e.g. EGL, BM, NP,
SimpleOT) and extend this resource to m (= 10000 000) OT executions, where m >> k.

Again, to fairly compare I18BS with OT extension protocols, we divide them into
precomputation and transfer phases. In this section, we compare the communication
and computational complexity of m executions of II§BS to one execution of an OT
extension protocol, as the latter generates a predetermined number (m) of OTs. We
compare II8BCS with the semi-honest ALSZ13 protocol and then with the maliciously

secure KOS15 protocol.

ALSZ13 comparison

Let’s consider the OT extension protocol proposed in [3] (ALSZ13), as illustrated in
Figure 4.5. At the time of writing, this protocol reports the fastest implementation with
10 million OTs generated in just 2.68 seconds. The ALSZ13 protocol is divided into
two phases: an initial OT phase and an OT extension phase. For comparison purposes,
we will focus solely on the second phase, which aligns with our distinction between the
precomputation and transfer phases.

In Tables 4.3 and 4.4, we present a comparison of the computational and communica-
tion complexity of the OT extension protocol (ALSZ13) and IIEBCS. In Table 4.3, PRG
refers to a pseudorandom generator, x is the number of base OTs executed during the

precomputation phase of the OT extension, m represents the total number of OTs, and [
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ALSZ13 OT extensions protocol [3]

Alice’s input: m pairs (z3,2}), Vj € [m] of I-bit strings.
Bob’s input: m selection bits » = (11, ..., 7).

Initial OT phase (Precomputation phase)
1. Alice randomly generates a string s = (sy, ..., Sx)-
2. Bob randomly chooses r pairs of k-bit strings {(k?, k})}5;.

3. Bob and Alice execute k base OTs, where Alice plays the role of the receiver
with input k and Bob plays the role of the sender with messages (kY. k}), Vi €

[K].
OT extension phase (Transfer phase)

4. Bob applies a pseudorandom number generator G' to k?, i.e. t' = G(kY).
Computes u’ = t' @ G(k}) ® r and sends u’ to Alice for every i € [x].

5. Alice computes q° = (s; - u') ® G(k;").

6. Alice sends (y7,y;) for every j € [m], where yf = 2 ® H(j,q;), y; = =; @
H(j,q; ® s) and g; is the j-th row of the matrix @ = [g'|...|q"]. Note that,
in practice, it is required to transpose () to access its j-th row.

7. Bob computes x;j = y;j ® H(j,t;).

Alice’s output: L.

Bob’s output: (z7',...,2]™).

Figure 4.5: Precomputation and transfer phases of OT extensions protocol presented in

3].

is the length of the OT strings. It is assumed that [ ~ x have a similar magnitude, as the
key length used in the garbled circuits is [ = 128,192, or 256, while x = 128 [3]. Now, we
justify the analysis presented in Tables 4.3 and 4.4.

Regarding the ALSZ13 protocol, for every ¢ € [k], Bob computes two PRGs in step
4 and Alice computes one PRG in step 5. This accounts for 3x PRG executions. For
every j € [m], Alice computes two hash functions in step 6 and Bob computes one hash
function. This accounts for 3m hash functions. For every i € [k], Bob computes two
m—bit XOR operations in step 4 and Alice computes one m—bit XOR operation. For
every j € [m], Alice computes two [—bit XOR operations in step 6 and Bob computes
one [—bit XOR operation in step 7. Also, for every j € [m], Alice computes one k—bit
XOR operation in step 6. This accounts for 3mk + 3ml + mk bitwise XOR operations.
For every ¢ € [k], Alice computes one m—bit AND operation in step 5. Finally, Alice
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has to perform a matrix inversion which accounts for around m log m bit operations. The
communication complexity is given by the following elements: Bob sends an m—bit vector
for every i € [k] and Alice sends two [—bit messages for every j € [m]. This accounts for
2ml + mk bits sent.

Regarding the IISBCS protocol, for every execution of the protocol, Alice computes two
hash functions in step 6 and Bob computes one hash function in step 7. This accounts
for 3m hash functions. Also, Alice computes two [—bit XOR operations in step 6 and
Bob computes one [—bit XOR operation in step 7. This accounts for 3ml bitwise XOR
operations. For every execution of the protocol, Alice performs 2x bitwise comparisons in
step 5. Also, Alice computes two k—bit truncation in step 6 and Bob computes one k—bit
truncation in step 7. The communication complexity is given by the following elements:
Bob sends a k—bit vector and Alice sends two [—bit messages, for every execution of the

protocol. This accounts for 2ml + mx bits sent.

Operation ALSZ13 [TgBCS
PRG (AES) 3K -
Hash (SHA-1) 3m 3m
Bitwise XOR 3mk +3ml+mk  3ml
Bitwise AND mek -
Matrix transposition mlogm -
Bitwise comparison - 2mk
Bitwise truncation - 3mkK

Table 4.3: Computational complexity comparison between ALSZ13 [3] OT extension pro-
tocol and II8BCS protocol from section 4.2.1.

ALSZ13 ~ IIBBCS

Bits sent 2ml +mk 2ml+ mk

Table 4.4: Communication complexity comparison between ALSZ13 [3] OT extension
protocol and II8BCS protocol from section 4.2.1.

The communication complexity is exactly the same in both protocols: ~ 3ml. So, the
OT extension protocol does not have any advantage over I[I1BB€S during the communica-
tion phase. Regarding their computational complexity, we have to compare the binary

operations executed by each protocol.
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Firstly, we can see that TISBCS transfer phase is asymptotically more efficient than
ALSZ13 OT extension transfer phase. The computational complexity of OT extension is
not linear in the number of OT executions, O(mlogm), whereas it is linear in the case of
[IBBCS O(m). Now, let us compare the binary operations between each protocol. Denote

by B&LSZB and BEPBCS the number of binary operations executed by ALSZ13 and TI8B©S,

respectively. As both protocols execute 3m hash functions, we do not take into account

ALSZ13

their execution. Also, assuming that x ~ [, By,

is roughly given by,

B&LSZB = 3K+ 3mk + 3ml + mk +mr + mlogm

= 8mk + 3k +mlogm

and BEPBCS = 8mk. Here, we simplify and assume that 3x PRGs executions consume
only 3k bit operations. Therefore, ALSZ13 has more Bj-5%1% — BEBS > mlogm binary
operations than the transfer phase of IISBCS protocol.

From the results of our comparison, we can conclude that the transfer phase of ITISBCS
is competitive with the corresponding phase of the semi-honest ALSZ13 protocol, and has
the potential to be even more efficient. Furthermore, the performance of IIBBCS transfer
phase is achieved while providing stronger security guarantees. Unlike the ALSZ13 proto-
col, which relies on computational assumptions of the base OT, TIBBSS has been proven
secure against quantum computers. Moreover, while ALSZ13 is a semi-honest proto-
col (assumes well-behaved parties that follow the protocol), TIBBCS protocol is secure
against any corrupted party. To obtain a fair comparison, it is appropriate to consider
OT extension protocols that are secure against malicious parties. The work developed in
[194] presented the first protocol in the malicious scenario, which was latter optimised by
KOS15 [4] and ALSZ15 [197]. Both optimizations carry out one run of the semi-honest
OT extension presented in ALSZ13 plus some consistency checks. The protocol presented
in [4] adds to ALSZ13 a check correlation phase after the transfer phase and the protocol
presented in [197] adds a consistency check phase during the transfer phase. This means
that both malicious protocols’ transfer phases have greater computational and communi-
cation complexity when compared with ALSZ13. Therefore, we can infer that the transfer
phase of IIBBCS has lower computational and communication complexity than its mali-

cious classical equivalents. In the next step, we compare the KOS15 protocol [4] with
[1BBCS,
KOS15 comparison

KOS15 protocol is very similar to ALSZ13, but it includes an additional phase called

check correlation phase. This phase ensures that the receiver is well behaved and does
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Operation KOS15 [18Bcs

Hash (SHA-1) 3m 3m
Bitwise XOR 3mk + 3ml + mk 3ml
Bitwise AND mk -
Matrix transposition mlogm -
Bitwise comparison - 2ml
Bitwise truncation - 3ml
k-bit additon 3(m+ (k4 w))k -
k-bit mult 2(m + (k 4+ w))k5®

Table 4.5: Computational complexity comparison between KOS15 [4] OT extension pro-
tocol and TI8BCS protocol from section 4.2.1.

not cheat. In Figure 4.6, it is presented the KOS15 protocol that generates m [-bit string
OT out of xk base OT, with computational security given by x and statistical security
given by w. Note that, in Figure 4.6, we join all the subprotocols presented in the original
paper: H'ég;E, [Tror and [[5eror- Also, they identify Z5 with the finite field Zox and
use “-” for multiplication in Zy~. For example, the element ¢; in Z;”:ll t;-x; (Figure 4.6,
step 10) should be considered in Zgx.

KOS15 [1gBes

Bits sent 2ml+mk +x 2ml -+ mk

Table 4.6: Communication complexity comparison between KOS15 [4] OT extension pro-
tocol and IIBBCS protocol from section 4.2.1.

The KOS15 protocol, like IIBBCS and ALSZ13, begins with a precomputation phase
that can be performed prior to the actual OT computation. However, the KOS15 paper [4]
originally carried out the computation of PRGs G during the OT extension phase. These
3k computations of G can actually be done during the precomputation phase as they are
independent of the input elements. The main difference between KOS15 and ALSZ13 lies
in steps 9 — 11, the check correlation phase. In this phase, both parties utilize a random
oracle functionality Frana(F3%) to obtain equal random values. Bob then performs twice
m’ k-bit sums, m’ k-bit multiplications and sends 2x bits (x and t) to Alice, who in
turn performs m’ k-bit sums and m’ k-bit multiplications. For the purpose of simplicity,

we assume that each s-bit sum takes k bit operations, and multiplication takes x!'®%,
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KOS15 OT extensions protocol [4]

Alice’s input: m pairs (z3,2}), Vj € [m] of I-bit strings.
Bob’s input: m selection bits © = (rq, ..., 7).

Initial OT phase (Precomputation phase)

1. Alice randomly generates a string s = (sq, ..., sx) and Bob randomly chooses
K pairs of k-bit strings {(kY, k})}= ;.

2. Bob and Alice execute x base OTs. Alice plays the role of the receiver with
input s and Bob plays the role of the sender with messages (k?, k;), i € [x].

3. Bob applies a pseudorandom number generator G to kY and k}: t' = G(k?)
and ti = G(k}). Also, set T" =t' D t}.

4. Alice applies G to k" and sets g;" = G(k;").

OT extension phase (Transfer phase)
Extend

5. Bob generates random elements r;, for » € [m + 1,m/] and resize r =
(71, ey Pony Pt 1y oo, T ), Where m/ = m + (k + w).

6. Bob computes u' = T" @ r and sends u’ to Alice for every i € [x].
7. Alice computes q' = (s; X u’) @ g;* for every i € [k].

Check correlation

/

8. Sample (X1, s Xm/) ¢ FRand (Far ).

9. Bob computes z = Z;L rj-x; and t = Z;L t; - xj, where t; is the j-th row

of the matrix [t!|...|t"] and sends these to Alice.

10. Alice computes ¢ = Z;nzll g; - Xj, where g; is the j-th row of the matrix
Q = [q"]...|q"], and checks that t = ¢+ r-s. If the check fails, output ABORT,
otherwise continue.

Randomize and encrypt

11. Alice sends (y3,y;) for every j € [m], where y§ = 29 ® H(j,q;), y; = =; @

12. Bob computes xgj = y;j ® H(j,t;).

Alice’s output: L.

Bob’s output: (z7',...,z]™).

Figure 4.6: Precomputation and transfer phases of OT extensions protocol presented in
[4].
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1.585) complexity and schoolbook

using the Karatsuba method for multiplication with O(x
addition with O(k) complexity.

Let us compare the binary operations between KOS15 and ITBBCS as we did with the
ALSZ13 protocol. Denote by 35)0515 and BEPBCS the number of binary operations executed

by KOS15 and I1BBCS | respectively. Again, without taking into account the execution of

KOS15

op is roughly given by,

3m hash functions and assuming that x ~ [, B

Bg;osw = 3mk + 3ml + mk

+ mk + mlogm
+3(m+ (k+w))k
+2(m + (k +w))s""®
= 11mk + mlogm

+ 3k% + 3wk

4 2?71/'431'58 4 2'%2.58 + 2'11),%1'58

and BSPYS = 8mk. Therefore, KOS15 has more BSOS — BEBSS > 5mk + mlogm
binary operations than IIBBCS transfer phase. For this estimation, note that we are

158 and we are not taking into account

considering the lower bound 2mk instead of 2mk
the implementation of the random oracle Frana(F3 ), which would add an extra cost linear
in the number of OT executions.

Regarding the communication complexity, the number of bits sent during both KOS15
and TIBBCS is almost the same. KOS15 only adds & bits to the communication during
the check correlation phase. However, since this overhead is independent of m (number

of OTs executed) its effect is amortized for big m.

4.3 Conclusion

The security and efficiency of OT implementations is crucial for secure computations.
While classical OT protocols rely on asymmetric cryptographic primitives, which are
known to be vulnerable to quantum attacks or have security based on conjectures, several
works [38, 39, 42, 139] have used the laws of physics to prove the security of BBCS-
based QOT protocols against malicious adversaries with access to quantum computers.
Additionally, using oblivious keys can separate the quantum technological burden from
the execution of OT and enable efficient implementation.

In this chapter, we compared the transfer phase of an optimized version (IIBB€S) of
the BBCS-based QOT protocol with the transfer phase of the currently fastest imple-
mentation of OT (ALSZ13). Our results showed that the transfer phase of II3BCS has
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the potential to be faster than the ALSZ13 protocol while offering higher security. In
addition to being secure against quantum computer attacks, BBCS-based QOT protocols
are also secure in the malicious setting, whereas ALSZ13 is only secure in the semi-honest
model. Furthermore, our analysis revealed that the transfer phases of current maliciously
secure implementations (ALSZ15 and KOS15) have a higher computation and communi-
cation complexity than II8BS. In the next chapter, we compare the performance of a
secure multiparty computation system based on both classical OT and BBCS-based QOT

protocols.
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Chapter 5
Private phylogenetic trees

Several privacy-enhancing technologies (PETSs), such as differential privacy [21], homo-
morphic encryption [22], and secure multiparty computation, have been applied in the field
of biomedical data analysis, including genomic data analysis [204—208]. To advance the
state of the art, there have been competitions [209] aimed at developing faster and more
secure solutions in genomic analysis. Recent surveys [210, 211] have discussed the role
of PETSs in various computational domains within the genomic field, including genomic
aggregation, GWASs and statistical analysis, sequence comparison, and genetic testing.
However, these surveys do not cover the application of privacy-preserving methods to

phylogeny inference.

In contrast to classical technologies, the use of quantum cryptographic technologies
in private computation has been limited. Only a few works have explored their integra-
tion, such as Chan et al.’s development of quantum-assisted real-world private database
queries [212] and the suggestion by Ito et al. [213] that quantum OT is suitable for
secure multiparty computation. However, quantum cryptographic technologies have ma-
tured to a level where their integration with privacy-enhancing technologies is possible.
Technologies such as quantum key distribution (QKD) and quantum random number gen-
erators (QRNG) are being commercialized for critical applications, such as governmental
data storage and communications, and have seen in-field deployment (e.g., OpenQKD,
https://opengkd.eu/). The quantum oblivious key distribution (QOKD) protocol, which
leverages the same technology as QKD and QRNG, benefits from its development and
provides the necessary resources to perform OT [130, 138, 139].

In this chapter, we present a feasible modular private phylogenetic tree protocol that
leverages quantum communications. It provides enhanced security against quantum com-
puter attacks and decreases the complexity of the computation phase when compared to
a state-of-the-art classical-only system. The system is built on top of Libscapi [214] im-

plementation of Yao protocol and PHYLIP phylogeny package [186]. It integrates three
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crucial quantum primitives: quantum oblivious transfer, quantum key distribution and
quantum random number generator.

This chapter follows a top-down approach. In Section 5.1, we start by explaining the
concept of phylogenetic trees and the distance-based algorithms used to generate these
trees. In Section 5.2, we set down the security definitions that will be used to analyse and
prove the system’s security. In Section 5.3 and 5.4, we describe the quantum cryptographic
tools and the software tools that are integrated into the protocol, respectively. In Section
5.5, we describe the proposed SMC system for phylogenetic trees. In Section 5.6 we
explain how the quantum cryptographic tools are integrated into the system. Section
5.7 is devoted to the theoretical security analysis of the protocol and in Section 5.8 we
perform a complexity analysis. In the last Section we present a performance comparison

of the system between a classical-only and a quantum-assisted implementation.

5.1 Phylogenetic trees

Phylogenetic trees are diagrams that depict the evolutionary ties between groups of or-
ganisms [215] and are composed of several nodes and branches. The nodes represent
genome sequences and each branch connects two nodes. It is important to note that
the terminal nodes (also called leaves) represent known data sequences, whether internal
nodes are ancestral sequences inferred from the known sequences [216, 217]. The length
of the branches connecting two nodes represents the number of substitutions that have
occurred between them. However, this quantity must be estimated because it cannot be
computed directly using the sequences. In fact, by simply counting the number of sites
where two nodes have different base elements (Hamming distance), we underestimate the
number of substitutions that have occurred between them.

The best way to compute a correct phylogenetic tree depends on the type of species
and sequences under analysis and the assumptions made by the sequences substitution
model. By a correct tree, we mean a tree that depicts as approximate as possible the
real phylogeny of the sequences, i.e. the real ties between known sequences and inferred
ancestors. These assumptions lead to different algorithms which can be divided into two

categories:

1. Distance-based methods: they base their analysis on the evolutionary distance ma-
trix which contains the evolutionary distances between every pair of sequences.
The evolutionary distance used also depends on the substitution model considered.
These methods are computationally less expensive when compared to character-
based methods;
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2. Character-based methods: they base their analysis on comparing every site (char-
acter) of the known data sequences and do not reduce the comparison of sequences

to a single value (evolutionary distance).

We only consider the distance-based algorithms that are part of the PHYLIP [218] dis-
tance matrix models, namely: Fitch-Margoliash (fitch and kitsch), Neighbour Joining
(neighbor) and UPGMA (neighbor). Also, we only consider the evolutionary distances
developed in PHYLIP dnadist program: Jukes-Cantor (JC) [219], Kimura 2-parameter
(K2P) [220], F84 [221] and LogDet [222]. For readers interested in learning more about
phylogenetic analysis, we recommend the textbooks by Ziheng [216] and Felsenstein [217].

Next, we give an overview of these distance-based methods to build some intuition on
how to tailor them to a private setting. We start by looking at the different evolutionary

distances and then at the distance-based algorithms.

5.1.1 Evolutionary distances

The evolutionary distance depends on the number of estimated substitutions between two
sequences, which is governed by the substitution model used. So, before defining a suitable
distance, it is important to have a model that describes the substitution probability of

each nucleotide across the sequence at a given time.

The distances considered in this work can be divided into two groups by their as-
sumptions. JC, K2P and F84 assume that the substitution probabilities remain constant
throughout the tree, (i.e. stationary probabilities), whether the LogDet distance assumes

that the probabilities are not stationary.

Also, the first three evolutionary distances (JC, K2P and F84) assume an evolutionary
model that can be described by a time-homogeneous stationary Markov process. This
Markov process is based on a probability matrix P(¢) that defines the transition proba-
bilities from one state to the other after a certain time period ¢. It can be shown [223]

that this probability is given by

P(t) = @ (5.1)
where the rate matrix Q is of the form given by (5.2).
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(5.2)

In Q, each entry Q;; represents the substitution rate from nucleotide i to j and both
its columns and rows follow the order A, C', G, T'. p is the total number of substitutions
per unit time and we can define the evolutionary distance, d, to be given by d = ut. The
parameters a, b, c, ..., [ represent the relative rate of each nucleotide substitution to any
other. Finally, w4, 7c, mg, mr describe the frequency of each nucleotide in the sequences.

From Expression (5.1), it is possible to define a likelihood function on the distance d and
use the maximum likelihood approach to get an estimation of the evolutionary distance.
The likelihood function defines the probability of observing two particular sequences, x

and y, given the distance d:

L(d) = ﬁ 7o Pory (%)
=1

The parameters of Q are defined differently depending on the evolutionary model used

and the maximum likelihood solution leads to different evolutionary distances.

Jukes-Cantor

The Jukes-Cantor model [219] is the simplest possible model based on Q as given in (5.2).
i
and sets the relative rates a« = b = ... = [ = 1. This model renders an evolutionary

It assumes the frequencies of the nucleotide to be the same, i.e. 74 = 71¢c =16 = 717 =

distance between two sequences x and y given by:

4 h,

where h,, is the uncorrected hamming distance and n the length of the sequences.

Kimura 2-parameter

This model [220] distinguishes between two different nucleotide mutations:

1. Type I (transition): A < G, i.e. from purine to purine, or C' <> T, i.e. from

pyrimidine to pyrimidine.

68



2. Type II (transversion): from purine to pyrimidine or vice versa.

These two different types of transformation lead to different probability distributions
denoted by P and @), where P is the probability of homologous sites showing a type I
difference, while Q is that of these sites showing a type II difference. So, the Kimura [220)]

metric between x and y is given by the following:

dxy:—%ln ((1—213—@)\/1—2@) (5.4)

where P = "1 Q) = "2 and n; and ny are respectively the number of sites for which two
sequences differ from each other with respect to type I (“transition” type) and type II

(“transversion” type) substitutions.

F84

This model [221] also distinguishes different nucleotide transitions but do not assume the
nucleotide frequencies to be the same. This leads to a more general distance which can

be estimated in closed form:

P A-B

where A = % + %, B = wonp + mang and C = wpmy for my = wo + wp and

TR = Ta+ T, and P and @) are defined as in the Kimura 2-parameter model above.
Although more complex models can be considered with different combinations of pa-

rameters in Q, not all of them produce a distance function that can be estimated in closed

form.

LogDet

As mentioned before, the models based on matrix Q assume that the probability matrix
P(¢) is stationary, i.e. remains constant throughout the tree. However, there are evo-
lutionary scenarios where this assumption does not give a correct description of reality.
The LogDet evolutionary distance [222] suits a wider set of models and considers the case

where P(t) is different at each branch in the tree. This is given by

1 det F,
dyy == 1In (#> (5.6)

\/det T, Hy

where the divergence matrix Fj, is a 4 x 4 matrix such that the ¢j—th entry gives the

proportion of sites with nucleotide ¢ in sequence = and j in sequence y. Also, [, and

69



Hy are diagonal matrices where its i—th component correspond to the proportion of 7

nucleotide in the sequence x and y, respectively.

5.1.2 Distance-based algorithms

All distance-based methods make use of evolutionary distances to compare different ge-
nomic sequences. Although it may lead to less accurate phylogenetic trees, these methods
are highly popular among researchers who have to handle large number of sequences. All

methods assume the following:

1. The evolutionary distance computed between each pair is independent of all other

sequences;

2. The estimated distance between each pair of sequences is given by the sum of the

size of the branches that connect both of them.
These algorithms are thus divided into two phase:

1. Distance computation phase: all the pairwise evolutionary distances are computed

according to the selected model. This step is common to all distance-based methods;

2. Iterative clustering: aggregate the sequences in clusters iteratively. This step is

specific to each method.

Let us briefly describe three of the most common distance-based methods [216].

UPGMA

The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method produces

a rooted phylogenetic tree and assumes the data to be ultrametric, i.e. assumes that

dyy < max(dy.,d,,)

for sequences x, y and z. These two assumptions imply that all the sequences are equidis-
tant to the inferred root sequence.

It starts by considering every sequence as a single-valued cluster. Then, it goes on
merging the clusters according to the smallest difference between them and recomputes
the distance matrix through a simple average of distances. In summary, we have the

following steps:

1. Merge clusters, C; = {¢;} and C; = {¢;} for sets ¢; and ¢;, with the smallest
distance present in the distance matrix, i.e. d;; < di;Vk,l. Create a new cluster

Cis; = {{ci,¢;}}. This new cluster represents a branch between clusters C; and Cj;
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2. Recompute the distance matrix according to the following formula:

d@l + de

dijj1 = 5

for all other clusters [;

3. Eliminate clusters C; and C} from the distance matrix and add cluster Cj/; with the

distances computed as in the previous step;

4. Repeat steps 1 — 3 until there is only one cluster left.

Neighbour-Joining

As we have seen, the UPGMA joins the clusters with the minimum distance between
them. Now, the Neighbour-Joining method considers not only how close two clusters are,
but it also considers how far these two clusters are from the others. Thus, the clusters to

be merged should minimize the following quantity:

q(Ci, Cy) = (r = 2)d(Cy, Cj) — u(Ci) — u(Cy)

where 7 is the number of clusters in the current iteration and u(C;) = . d(C;, Cj).
As opposed to the UPGMA algorithm, this method produces an unrooted tree and it

can be summarised in the following steps:

1. Consider every sequence as a single-valued cluster and connect it to a central point;

2. Compute a matrix Q where its entries are given by the quantity above, i.e. Q;; =

3. Identify clusters C; and C; with the smallest value in the matrix Q. Create a new

node C; ; and join both clusters C; and Cj to it;

4. Assign to the branch C;C;/; a distance given by:

GG =5

and to the branch C;C;/; a distance given by:

2d<0170]) - 2 r—9 ;
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5. Eliminate clusters C; and C} from the distance matrix and add cluster Cj/; with the

distances to the other clusters computed as follows:

d(Cl, CZ/J) = %(d<01701> + d<Cl>Cj) - d(Cla CJ))

for all other nodes Cf;

6. Repeat steps 2 — 5 until there is only one cluster left.

Fitch-Margoliash

This method renders an unrooted tree and also assumes that the distances are additive.
It analyses iteratively three-leaf trees and computes the distance between three known
nodes and one created internal node. This is based on the following observation. Given
three clusters Cj, C; and Cj, and one internal node a that is connected to all these three

clusters, the distances between the clusters are given by:

d(C;,C;) = d(Cy,a) + d(a,Cy)
d(C;, ) =d(Ci a) + d(a,Cy)
d(Cl, C]) = d(Ch CL) + d(a7 Oj)7

from which we can easily see that

ia.C) = %(d@, C)) +d(C,. C) — d(Ch 0j>)
d(a,Cj) =3 (d(Ci, Cj) +d(Cy, Cj) — d(Cy, Cz)) (5.7)

d(a, Ol) = % (d(C’Z, Cl> + d(C’l, Cj) - d(C’Z, C])) .

Thus, we can estimate the distances from the known clusters to the new internal node
using the distances between the clusters as given in (5.7). Based on this, the Fitch-

Margoliash algorithm goes as follows:

1. Consider every sequence as a single-valued cluster;

2. Identify the two clusters, C; and C;, with the smallest distance in the distance

matrix;
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3. Consider all the other clusters as a single cluster C; and recompute the distance
matrix with just three clusters. The distances between the identified clusters and
the new cluster is given by an average value of the distances between the identified

clusters and the elements inside the cluster C, i.e.

d(C,. Cr) = ﬁ S d(Ce)

ceCy

and similarly for Cj;

4. Using expressions (5.7), we compute the distances from the three clusters and the

central node;

5. Merge clusters, C; and C}, into a new one (j/; and recompute the distance matrix

between C;/; and all the other clusters ¢ € Cj by a simple average expression:

d(C, CZ) + d(C, C}) .
2 Y

d(c, Ciyj) =

6. Repeat steps 2 — 4 until there is only one cluster left.

All these methods output a tree with some topology, T along with the distances be-

tween the branches.

5.2 Security definition

In this chapter, we consider a multiparty computation scenario that is secure against
semi-honest parties. This means that all the parties strictly follow the protocol but can
use their inputs, received messages and outputs to deduce any additional information.
As such, these are also commonly called honest-but-curious parties. Nevertheless, we can
extend the protocol to the malicious setting, by simply implementing a two-party secure
computation protocol that is secure against malicious adversaries [75]. Our security will
follow the simulation paradigm and we start with the definition of security in a multi-party

setting. The formal definition is taken from [75] and it requires the following elements:

e F denotes the ideal functionality to be computed in the SMC session, i.e. F : X" —
Y™ where n is the number of parties participating in the SMC and X and ) are the
input and output space of each party, respectively. X? € X and Y* € ) denote the
sets of input and output of party P?, respectively. Also, for short, X = (X1, ..., X™)
and Y = (Y1, ... Y");
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7 denotes the protocol that implements the ideal functionality F;

C is the set of corrupted parties;

o view' (X) := (X' r;m},...,m!). This tuple is called the view of party P’ and it
contains its inputs (X*), its random-tape value (r*) and the messages m’ received

during the SMC execution;

e output_(X) = (outputl(X),...,output”(X)), where output! (X) is the output of

party i computed from its view view' (X);
e S is a probabilistic polynomial-time simulator in the ideal-world;

e The distribution on inputs X given by a real-world execution of the protocol 7:

Real,(C; X) := {{view,(X) :i € C}, output, (X)} .
e The distribution on inputs X given by the ideal-world simulation of the parties’

view:

Idealg r(C; X) := {S({(X", F(X")) :i € C}), F(X)}

X
Definition 8 (Semi-honest security). A protocol securely realizes F in the presence of
semi-honest adversaries if there exists a simulator S such that, for every subset of cor-
rupted parties C' and all inputs X, we have

C

Real,(C; X) = Idealg (C; X), (5.8)

where = denotes computational indistinguishability.

This definition conveys the notion that whatever can be computed by a party during
the execution of the protocol is only based on his inputs and outputs, i.e. the execution of
the protocol do not provide any further information. This is equivalent to expression (5.8),
which states that the distribution of the view and outputs in a real-world execution is
computationally indistinguishable from the distribution generated by a simulator and the
functionality output. It is also worth noting that, as it is proved in [224], for deterministic
F we have that definition III.1 is equivalent to the simpler case where the Real and Ideal
distributions do not take into account the output of the real protocol execution and the

output of the functionality, respectively, i.e.

Real,(C; X) = {vievw’ (X):i € C}x
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and

Ideals r(C; X) = {S{(X", F(X"):ieC})},.

Therefore, we just need to build a simulator that satisfies expression (5.8) for the Real,(C; X)

and Idealg r(C;X) given as above in order to prove security.

5.2.1 Distance matrix functionality

For our private phylogenetic tree problem, the ideal functionality F outputs the distance
matrix according to the selected evolution model (Jukes-Cantor, Kimura 2-parameter,
F84 or LogDet). We denote by DMy, d € {JC,K2P,F84, LD} such a functionality. Note
that this functionality is deterministic and, as we pointed before, we just have to prove
expression (5.8) to hold for the simpler definition of Real and Ideal.

The protocol that privately computes the distance matrix DM, is built up by many invo-
cations of a two-party distance functionality, denoted by Dy for d € {JC, K2P, F84,LD}.
Consequently, we can reduce the the security of DM, to that of D; and use the composition
theorem proved in [225] to prove DMy security.

Before presenting the composition theorem, we provide some informal definitions. We
have that an oracle-aided protocol using the oracle-functionality f is a protocol where the
parties can interact with an oracle which outputs to each party according to f. Also, when
an oracle-aided protocol privately computes some ¢ in the sense of (5.8) using the oracle-
functionality f, we say that it privately reduces g to f. For a more detailed discussion
on this topic, we refer the interested reader to [225]. The composition theorem for the

semi-honest model can therefore be stated as follows:

Theorem 2. (Composition theorem) Suppose that g is privately reducible to f and that
there exists a protocol for privately computing f. Then, there exists a protocol for privately

computing g.

In other words, there exists a private protocol of g when the oracle-functionality f is

substituted by its real private protocol in the corresponding oracle-aided protocol g.

5.3 Quantum tools

In this section, we present three quantum primitives used in the private computation of

phylogenetic trees, rendering a full quantum-proof solution.
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5.3.1 Quantum oblivious key distribution

We explored the concept of oblivious keys in chapter 3. To generate these oblivious keys,
we saw that we can follow the prepare-and-measure quantum approach developed by
Bennet [6] along with some commitment functionality. As an example, Lemus et al. [139]
proposed to use the Halevi and Micali classical bit commitments based on universal and
cryptographic hashing [226]. Thus, its security is based on the laws of physics and on the
fact that there is no significant quantum speed-up in finding collisions on the hash-based
bit commitments [139, 227, 228]. Also, as discussed in [51, 139], this protocol has an
important security feature: it is resistant against intercept now, decipher later attacks.
It this chapter, we call quantum oblivious key distribution (QOKD) the subprotocol of

BBCS-based QOT protocols that comprises all the phases excluding the transfer phase.

QOKD

For illustration, the QOKD protocol in the bounded-quantum-storage model, I ™, is

summarised in Figure 5.1.

5.3.2 Quantum random number generator

A random number generator (RNG) is another very important tool in the realm of secure
multiparty computation. The SMC security can be compromised and the parties’ privacy
can be broken if the RNG used is predictable. An attack of this kind was reported in
[3] where the authors exploited the Java weak random number generator used in v0.1.1
FastGC [229]. This attack allowed them to disclose the inputs of both parties in an SMC
scenario. It also highlights the fact that it is not possible to use any kind of RNG for
cryptographic purposes.

In the case of cryptographically secure pseudorandom number generators (CSRNG),
it is crucial that it provides both forward and backward security. The former means
that an attacker should not be able to predict the next generated number even when
he knows all the generated sequence. The latter means that an attacker should not
be able to predict all the generated sequence from a small set of generated elements.
These two properties are not present in common RNGs. For example, linear congruential
generators do not fit for cryptographic tasks since they can be easily predicted as reported
in [230]. Also, Krawczk found that a large class of general congruential generators do not
provide forward security even for obscured parameters [231]. So, in order to produce some
CSRNG, instead of using linear operations, the research community decided to rely on the
computational intractability of computing the discrete logarithm. Both [232] and [233] use
modular exponentiation as an intermediate step in order to generate some pseudorandom
bit. As mentioned above, all the cryptographic protocols with their security based on

the discrete logarithm problem are threatened by quantum computers and these CSRNG
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[JQOKD

bgs  Protocol

Parameters: n, security parameter.
Alice’s input: (mg,mq) € {0, 1} (two messages).
Bob’s input: b € {0,1} (bit choice).

BB84 phase:

1. Alice generates random bits * <—g {0, 1}" and random bases 6 < {+, x }".
Sends the state |ar:A>6,A to Bob.

2. Bob randomly chooses bases 8% <—g {4, x }" to measure the received qubits.
We denote by xP his output bits.

Waiting time phase:

3. Both parties wait time At.

Oblivious key phase:

4. Alice reveals to Bob the bases 8” used during the BBS/ phase and sets his

oblivious key to ok® := xA.

5. Bob computes e® = 8% @ 0* and sets ok® := xB.

Alice’s output: ok”.
Bob’s output: (ok®,eB).

Figure 5.1: QOKD protocol in the bounded-quantum-storage model.

protocols are not an exception. Besides this technique, one could use either AES or DES

as cryptographically random generator.

Although these techniques are used to provide unpredictability and backward secrecy,
all the randomness relies on some initial seed. This seed is used because all the process
is based on deterministic algorithms. So, a pseudo RNG can be viewed as a randomness
extractor from some initial random value. For this reason, it is crucial to use an initial
random value that is as close as possible to a truly random value. This can be generated
from different sources and usually, the best randomness comes from physical devices (e.g.
atomic decay [234] or thermal noise [235]). So, a potentially good source of true RNG
comes from natural phenomena where some part of the system is used as the source of
entropy. In the case of classical natural phenomena, the entropy is frequently taken from

some unknown or chaotic subsystem which can ultimately be described by a deterministic
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theory. In this case, the unpredictability drawn from the system’s entropy comes from our
lack of knowledge and inability to fully grasp the underlying complex natural mechanisms.
Also, some classical phenomena (e.g. mouse pointers) may not have enough entropy to
generate good quality random numbers. However, quantum natural phenomena have their
roots in quantum mechanics which is intrinsically related to probability theory. For this
reason, quantum systems can be potential sources of entropy even assuming complete
knowledge of the system. This comes from the fact that, in quantum mechanics, we only
have access to the probability distribution of the system’s state and we can only know it

after measuring it [236].

Within the scope of SMC, the generation of the circuit’s wire keys must be guaranteed

to be unpredictable and efficient. All these features can be achieved with a quantum RNG
(QRNG) [237].

5.3.3 Quantum key distribution

As we will explain in the last section, part of the communication between the parties
should be kept encrypted. Message encryption is commonly achieved with symmetric
cryptographic tools, such as AES (Advanced Encryption Scheme) or the perfect cypher
one-time pad. These symmetric tools are used to encrypt the communication content
through a common key assumed to be only known by both communicating parties. How-
ever, the techniques used to distribute a common key cannot be realized using just sym-
metric cryptography and one needs asymmetric cryptography. Unfortunately, most of the
commonly used techniques in asymmetric cryptography (RSA, Elliptic Curves or Diffie-
Hellman) rely on computational assumptions that can be broken by a quantum computer

through the already mentioned Shor’s algorithm [29].

So, to render a quantum-resistant privacy-preserving solution, we make use of quantum
key distribution (QKD) protocol to share symmetric keys to be used along with symmetric
cryptography [166, 238-240]. Its security relies on the laws of quantum physics and it
is proven to be resistant against computationally unbounded adversaries [80, 241]. This
level of security comes from one very important quantum property known as the No-
Cloning theorem. This property ensures that it is not possible to measure a quantum
state without introducing a measurable perturbation in the system. Thus, both parties
enrolling in the QKD protocol will be able to detect a potential eavesdropper in case some

adversary tries to intercept and read the quantum signals.
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5.4 Software tools

Next, we present the open-source tools used to implement the system presented in the

subsequent sections.

5.4.1 CBMC-GC

The CBMC-GC compiler [242] is used in step 1) of Yao protocol to generate the boolean
circuit representation of the desired function. It translates C-like code into boolean circuits
based on a model checking tool called CBMC and it optimizes circuits for size and depth
[243, 244]. HyCC [12] is also a potential candidate for this step as it builds upon CBMC-
GC. However, it aims to build circuits for hybrid SMC protocols in which our system is

not based.

5.4.2 Libscapi

The Libscapi library [214] implements several important cryptographic primitives for two-
party and multi-party protocols. It is extensively used to implement steps 2—5 of the Yao
protocol in the repository MPC-Benchmark [245]. This implementation has integrated
one of the most efficient OT extension protocols [246] along with the base OTs proposed
by Chou and Orlandi [247].

5.4.3 PHYLIP

The PHYLIP package [218] is a C++ open-source project that provides a set of programs
to infer phylogenies. Among other programs, it implements distance-based methods (UP-
GMA, Neighbour-Joining, Fitch-Margoliash) and computes the evolutionary distances
described previously in Section 5.1.1 (JK, K2P, F84, LLD). Due to its modularity, we in-
tegrate PHYLIP distance methods with Yao protocol for evolutionary distances assisted

with quantum technologies.

5.5 Secure multiparty computation of phylogenetic

trees

The proposed system allows to securely compute a suite of algorithms that perform phy-
logeny analysis through the computation of phylogenetic trees. Based on the modular

nature of distance-based algorithms, the system combines different evolution models with

79



different phylogenetic algorithms. In this section, we describe how to integrate the tools

presented in previews sections 5.3-5.4 to develop this modular private system.

5.5.1 Functionality definition

As already mentioned in Section 5.1, all distance-based methods are divided into two
phases: distance matrix computation and distance matrix processing. Apart from the
metric used, the first phase is similar among all methods whereas the second phase is
specific to each one while depending only on the distance matrix. Therefore, each phase

corresponds to a particular functionality that can be formalized as follows:

e Functionality DM: receives some distance metric d € {JC,K2P,F84 LD} and all
input sequences, and outputs a matrix with the pairwise distances between every

sequence, i.e.

0 dip dim
dep 0 da,m
DM(d; 81, -y Sm) =
dm 1 dm,Z 0

where d; ; = d(s;, s;) for short.

e Functionality A: receives a distance matrix M and an algorithm type
a € {UPGMA,NJ,FM},
and outputs the structure of the tree in newick tree format, i.e.
A(M,a) = (subtree; : [y, subtrees : [5),

where each [; and Iy denotes the distance to its parent node, subtree is built up
by other subtrees and the leaves are given by (subtreey_y : lp—1, s;, : lg). For
consistency, leaves are also considered as a subtrees. Note that this representation is
not unique, e.g. (s1:0.7,(s2:0.3,s3:0.5) :0.5) and ((s3: 0.5,52: 0.3) : 0.5,51 : 0.7)

represent the same rooted tree depicted in Figure 5.2.

Therefore, if we consider the equivalence relation, ~, given by

(subtree; : [1, subtree; : ls) ~ (subtree, : Iy, subtree; : ),
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Figure 5.2: Example of rooted phylogenetic tree.

we have that the quotient set of the trees by ~ satisfy the uniqueness property from

an evolutionary point of view.

For simplicity, denote by A9 the private protocol that implements sequentially both
functionalities described above, i.e. A%(sq,...,s,) = A(DM(d; $1, ..., Sm),a). This leads
to twelve possible combinations of algorithms A% for d € {JC,K2P,F84,LD} and a €
{UPGMA NJ,FM}.

5.5.2 Private protocol

During the distance matrix computation phase (DM) of the private A%, each party has to
compute the distance between his sequences and the other parties’ sequences privately,
i.e. without revealing his sequences to the other parties. Since this corresponds to several
instances of a two-party secure computation, we make use of the Yao protocol described
in Section 2.2.1. This means that each party has to generate the boolean circuit represen-
tation of the elected distance d, which is accomplished by the CBMC-GC software tool
before the beginning of the protocol. In Section 5.7.1, we analyse how to generate these
circuits.

Now, since the Yao protocol is executed only between two different parties P and P?
for 4, j € [n], the other participating parties P, t € [n]\ {4, }, do not have access to the
distances computed between theses two parties. For this reason, P! has to receive the
result of the Yao protocol execution from both P7 and P!. After this, each party outputs
the distance matrix that is used as the input of PHYLIP programs: fitch, kitsch or
neighbor.

In the second phase of the protocol (4), the parties do not need to communicate because
this phase only depends on the quantities computed during the first phase. For this reason,
this phase is executed internally by each party, who then compute the phylogenetic tree.
This phase is carried out by the PHYLIP programs mentioned in the previous paragraph.
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Figure 5.3: Overview of the Aj network structure.

These two phases are shown in Figure 5.3 and we give more details about the protocol

assisted with quantum technologies in the next section.

5.5.3 Quantum private protocol

Let us specify the private Aj protocol with the quantum cryptographic tools. Following
the scenario depicted in Figure 5.3, we define S; = {s; 1, ..., si,} to be the set of sequences
owned by party P’. Also, we denote by d(; ) (jx) the distance between the I-th sequence
of party P and the k-th sequence of party P7, i.e. d(iy) k) = d(Sis, Sjk)-

As briefly described before, the private A% protocol has two phases. The first phase
requires different types of interactions between the parties to compute the desired distance
matrix and the second phase is computed internally. Since the second phase is carried
out internally, there is no need for communication between the parties. Therefore, the
quantum cryptographic tools will only be used during the first private phase. In summary,
each pair of parties require two quantum channels as depicted in Figure 5.3: one to
generate oblivious keys for oblivious transfer and the other to generate symmetric keys
for encryption.

Consider the case where P; has to compute the distance matrix entry corresponding to
distance d; ), jx)- Depending on whether P, owns both sequences, one of the sequences

or none of the sequences (s¢1), (jk)), P proceed as follows:

1. If i = j =t (i.e. both sequences are owned by P), d ), k) is computed internally
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by P; (blue arrow in Figure 5.3);

2. If i =t and j # t (i.e. one of the sequences is owned by F;), d(; ),k is computed
privately with Yao protocol assisted with QOKD system (red arrow in Figure 5.3);

3. If i #¢t and j # t (i.e. none of the sequences is owned by P,), both parties P; and
P; (or just party P in case i = j) must send to P, the distance d; ;) ;) encrypted
with the symmetric key generated through the QKD system (black arrow in Figure
5.3).

5.6 Quantum technologies integration

Now, let us see the role of quantum technologies in this private system and its integration

with quantum networks.

5.6.1 Quantum oblivious transfer

Libscapi implementation of Yao protocol combines a very efficient base OT protocol with
one of the fastest OT extension protocols. It uses the base OT (SimpleOT) proposed
by Chou and Orlandi [94] integrated with the OT Extension (KOS15 [4]) presented in
chapter 4. In this setting, the IIEPCS protocol can be implemented in two different
ways depending on the number of oblivious keys generated between the two parties: as
a base OT protocol integrated within OT extension protocol or as a stand-alone method
substituting all Libscapi OT implementation. If the number of oblivious keys generated
is scarce compared to the number of OT required, then one should integrate IIEBCS in
the OT extension. Otherwise, one could directly use the IISB®S protocol. A scheme of
the integration of the quantum oblivious key distribution (QOKD) system is depicted in
Figure 5.4.

It is important to note that the base OTs executed during the pre-computation phase
of the OT extension have the parties’ roles reversed. This means that the OT extension
sender is the base OT receiver and vice-versa. This should be taken into consideration
in case the TIBBCS is integrated within OT extension because IIBBCS is not symmetric
in the sense that the apparatus used by the sender is different from that of the receiver.
However, since it is known that OT is symmetric, we can use the reduction proposed in

[248] without having to swap the quantum technological material.
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' Yao protocolf
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Garbler

unit ECIaSS|caI channeli

Figure 5.4: Overview of the integration of the QOKD service and the CBMC-GC tool in
the Yao protocol.

5.6.2 Quantum random number generation

As previously described, the Yao protocol needs to generate random numbers for the keys
in the Wire encryption step. This is crucial for the security of the protocol because its

predictability allows deducing the parties’ input as reported in [3].

Libscapi implementation makes use of OpenSSL library function RAND_bytes to ran-
domly generate a seed from which it computes new numbers. In this private system, we
substitute this function to a call of QRNG.

5.6.3 Quantum key distribution

The QKD system allows the parties to receive the distance elements of the sequences they
do not own, while preserving the security of the system. We use the keys generated by

the QKD system along with the perfect cipher: one-time pad.
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5.6.4 Quantum network integration
Technological equipment

Both QKD and QOKD protocols rely on the same physical processes. They can both
be realized either with continuous or discrete variables [139, 166, 239, 249]. Also, the
technological equipment used by the receiver (Bob) and transmitter (Alice) is the same
in both quantum services (QKD and QOKD). As for the case of the prepare-and-measure
setting, the first quantum step is the same in both protocols: Alice randomly sends
quantum states in two different bases and Bob measures these states on random bases.
The difference relies on the classical post-processing phase. So, we can conclude that
both services share the same technological equipment (fibre, receiver and transmitter).
Moreover, as proposed by Pinto et al. [250] in a similar setting, both QKD and QOKD

services can coexist with classical signals in the same fibre.

Network topology

The quantum private protocol explained above in Section 5.5.3 assumes that every two
parties have a direct quantum channel between them that is used to generate oblivious keys
and symmetric keys, i.e. a fully connected quantum network. This approach follows from
the fact that the first QKD and quantum OT (QOT) protocols were based on prepare-
and-measure techniques [5, 6]. However, as discussed in chapter 3, there are also protocols
that implement device-independent QOT (DI-QOT) [173, 181] (under some constraints)
and DI-QKD [166]. In addition to the advantages from a security point of view, these DI
protocols can also be implemented within a star-structured quantum network having an
untrusted party as the middle point. This increases the implementation flexibility of the
proposed quantum private protocol of phylogenetic trees (Section 5.5.3).

As analysed by Joshi et al. [251], existing networks fall into three possible types:
trusted node networks, actively switched and fully connected quantum networks based on
entanglement sharing and wavelength multiplexing. Using the two types of protocols just
mentioned (prepare-and-measure and device-independent), it is possible to implement our
proposed system in all three existing quantum network implementation types.

Moreover, Kumaresann et al. [252] analyses possible SMC infrastructure topologies
that can be created based on a set of OT channels shared between some pairs of parties
in the network. They developed “secure protocols that allow additional pairs of parties
to establish secure OT correlations using the help of other parties in the network in the
presence of a dishonest majority” (Abstract, [252]). Since they work in the information-
theoretical setting, there is no security loss in combining Kumaresann protocol with quan-

tum approaches. This integration increases the range of configurations allowed. However,
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further efficiency analysis has to be done to understand the impact of this approach in

practice.

5.7 System security

In this section, we analyse the security of the proposed system. We start by describing
the methods used to privately compute the distance between two sequences and then we
prove the security of the private protocol proposed in Section 5.5.3 which implements the

functionality described in Section 5.5.1.

5.7.1 Private computation of distances

The private computation of the distance between sequences is an important building block
in the security of the system. We have that the privacy of the sequences directly relies on
this step. Here, we go through the methods used to compute the distances used by the
PHYLIP program: Jukes-Cantor, Kimura 2-parameter, F84 and LogDet.

A common building block to all these four distance metrics is the computation of the
Hamming distance between two sequences x and y, h,,,. We start by looking at an adapted
divide-and-conquer way to compute the Hamming distance between two sequences and

then we see how to apply it to the private computation of distance metrics.

Hamming distance

We are interested in the boolean representation of the Hamming distance and, as men-
tioned above, we use the CBMC-GC tool to translate ANSI-C code into this representa-
tion. Usually, to compute the Hamming distance between two binary strings, x and y, we
start by applying the XOR operation, z = @ y. Then, we just have to count the number
of 1I’s in z. This operation is commonly known as population count or popcount(z) for
short. So, the binary Hamming distance is given by h,, = popcount(z & y).

We use an adapted divide-and-conquer technique for the computation of popcount(z)
[253]. Originally, this divide-and-conquer technique starts by dividing the sequence into
2-bit blocks and then counts the number of 1’s inside each 2-bit block. After that, it
allocates the result of each block in a new 2-bit block. Then, we can sum the values inside
these 2-bit blocks iteratively.

We follow the approach described above but we have to tailor it for the computation
of the Hamming distance between two four-based sequences (A,C,G,T). Since we are
using a boolean circuit representation, the nucleotide sequences must be represented in

binary. So, by convention, we use the following 2-bit encoding: A = 00, C'= 01, G = 10
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and T = 11. If we follow directly the approach described above, we would have that the
Hamming distance between the single-valued sequences “A” and “C” is smaller than the

single-valued sequence between “A” and “T":

dy(A,C) = popcount(00 & 01)
= popcount(01) =1,

dy(A,T) = popcount(00 @ 11)
= popcount(11) = 2.

This issue comes from the fact that we are counting the number of 1’s inside every 2-bit
blocks. Instead, we are just interested in knowing if there is at least one element 1 inside
each 2-bit block because it indicates that the bases at that site are different. Therefore,
before counting the number of 1’s in the XORed sequence, we apply an OR operation to
the bits inside every 2-bit blocks. We call this operation popcount’(z). For simplicity,
hereafter we denote by h,, the tailored Hamming distance between sequences x and y.
Now, we have that the tailored Hamming distance between “A” and “T” gives the desired

result:

duy(A,T) = popcount’(00 & 11)
= popcount’(11)
= popcount(0R(1,1)) = 1.

In Figure 5.5, we show an example on how to compute the Hamming distance between

two-valued sequences “AG” and “GC”.

Jukes-Cantor

As described in Section 5.1.1, the Jukes-Cantor distance between two sequences is given

by:
3 4 h
dy, = ——m( - —ﬂ>,
Y 4 3N
where hg, is the hamming distance between sequence x and sequence y.
Now, note that the function f(z) = —3In ( - %%) is one-to-one. This means that,

from a privacy point of view, f(z) carries the same amount of information than x. There-

fore, we could simply proceed as follows:

1. Privately compute the Hamming distance, h,,, using the tailored Hamming distance

method described above and the Yao protocol assisted with quantum oblivious keys;
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Figure 5.5: Overview of the tailored divide-and-conquer technique. This corresponds to
lines 12-19 in Figure A.1 in Appendix A.

2. Internally compute d,, = f(hsy) (no need of quantum SMC).

This way, we just have to generate the boolean circuit for h,, rather than generating

for the full expression d,.

Kimura

In Section 5.1.1, we saw that the Kimura 2-parameter model leads to the following dis-

tance:

dpy = —%m ((1 —2P —-Q)/1 —2@),

where P = 2, @Q = 3 and n; and ny are respectively the number of sites for which two
sequences differ from each other with respect to type I (“transition” type) and type II
(“transversion” type) substitutions.

Similar to the case of Jukes-Cantor metric, note that h(z) = —3 ln(\/%) is one-to-one

and only defined for x > 0. Thus, we can proceed as follows:

1. Privately compute the expression ¢ = (N — 2n; — ny)?*(N — 2ny) using the tailored
Hamming distance method described above and the Yao protocol assisted with

quantum oblivious keys;

2. Internally computes d,, = h(c) (no need of quantum SMC).

More precisely, the ANSI-C code that privately computes expression ¢ = (N — 2ny —
n9)?(N — 2ny) proceeds as follows. It uses the function popcount,(z) described above to

compute the quantities n; and ny. Observe that a transition type (A <> G or C' < T)
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renders the same XOR value:

AdG=00610=10
TeC=11401=10.

Therefore, using a four-sized sequence, the quantities n; and ny are given by:

ny = 4 — popcount,(x &y ® 10101010)
ny = popcount,(z ®y) — ni.
F84 and LogDet

Recall from Section 5.1.1, that the F84 (F,,) and LogDet (L,,) distances are given,
respectively, by:

B P (A-DB)Q Q
L=t (d_F) (5.10)
4 det [T, TI,

where A = % + %, B = wemp + mang and C' = wrmy for my = me + mp and
TR = Ta+ 7, and P and @ are defined as in the Kimura 2-parameter mode above. Also,
the divergence matrix Fy, is a 4 X 4 matrix such that the 7j—th entry gives the proportion
of sites in sequence = and y with nucleotide i and j, respectively. Also, [], and Hy are
diagonal matrices where its t—th component correspond to the proportion of ¢ nucleotide
in the sequence x and y, respectively.

As before, we want to split the private computation of both F;, and L,, in two steps.
Note that, in this case, there is no clear way to define two bijective functions, g() and
q(), on some simple parameters, d and e, such that F,, = g¢(d) and L,, = p(e). By
simple parameters, we mean parameters that do not depend on complex operations such
as logarithm or square root. Instead, one can use the CORDIC algorithm [254, 255] for
square-roots and logarithm functions and translate an approximation of both F},, and L,

into boolean circuits.

5.7.2 Private computation of phylogenetic trees

In this section, we prove that the protocol Aj described in Section 5.5.3 securely imple-
ments functionality AoDM described in Section 5.5.1 according to the security definition 8.

So, we want to prove the following theorem:
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Theorem 3. The protocol AY securely realizes A o DM in the presence of semi-honest

adversaries.

We start by noting that the ideal functionality outputs the distance matrix to the par-
ties and that during A computation there is no interaction between the parties. Therefore,
the security of the system is independent of the distance-based algorithm used (UPGMA,
Neighbour-Joining or Fitch-Margoliash) and we can only focus on the computation of DM
functionality.

As already mentioned, the protocol that implements the functionality DM is built
up by many invocations of a two-party distance functionality, denoted by D, for d €
{JC,K2P,F84,LD}. So, in order to prove the above theorem, we will need to following

two lemmas:

Lemma 12. A privately reduces DM to Dg, i.e. an oracle-aided A§ protocol privately

computes DM using the oracle-functionality Dy.

Proof. In order to prove this lemma, we have to develop a simulator S that simulates the
view of a set of corrupted parties C'. S starts from receiving all the input sequences from

the corrupted parties. It then proceeds as follows:

—_

. Generates random sequences of the honest parties, H.
2. Invokes the oracle-functionality Dy on these sequences.

3. Sends to all corrupted parties C' the results of distances computed from honest

parties sequences.
4. Invokes the oracle-functionality D; on the sequences owned by the corrupted parties.

5. Invokes the oracle-functionality D4(s;, s;) for s; € H and s; € C'.

In a real execution, the corrupted parties will only receive the distances computed by
Dy on the honest parties sequences (as in step 2.), on their sequences (as in step 4.) and
between corrupt and honest parties. Therefore, we have that the oracle-aided Aj protocol
privately computes DM using the oracle-functionality Dy.

m

Lemma 13. Yao protocol with the OT primitive instantiated by TIBBCS protocol (Fig-

ure 4.3) privately computes Dy.

Proof. In [90] it was developed a framework that allows quantum protocols to be composed

in a classical environment. They also mention that a general secure function evaluation
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remains secure when instantiating the OT primitive by a secure quantum version. In
[256], it was proved that TIBBCS protocol is secure according to the security definition
given in [90]. Therefore, we can compose the IIBBSS protocol with a Yao protocol [257]
while preserving the overall security.

O

So, from Lemma 12 and 13 we can use the composition theorem 2 and conclude that
the protocol AJ is secure.

We have proved that our system is well designed and secure against quantum computer
attacks under the semi-honest model. In order to extend the protocol to the malicious
setting, we just have to implement a two-party secure computation protocol that is secure

in the malicious adversary model [75].

5.8 Complexity analysis

In this section, we start by analysing the complexity of the protocol A§ presented be-
fore. We assume there are n parties, P, ..., P,, with My, ..., M, sequences, respectively.
Also, we assume that the sequences are aligned and that they have the same number of

nucleotides, s.

5.8.1 Protocol complexity analysis

Now, let us analyse the complexity of the protocol presented in Section 5.5.3.

Yao protocol executions

Regarding the number of Yao protocol executions, we have that each party P; owning
M; sequences has to perform N, = M; 3", ; M; secure distance computations. So, the

total number of Yao protocol executions is given by
Nyao = ZN\J}aO = Z M]Mz
J Ji#]

If we assume the number of sequences per party to be the same, i.e. M; = MVj € [n],
then we can simplify the expression above and conclude that Ny, = M?n(n — 1). This
means that the number of Yao protocol executions is quadratic in the number of sequences
per party (O(n?)) and also in the number of parties (O(M?)).
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OT executions

From Ny,, we can deduce the number of OT executions. In the Yao protocol, we need
to execute one OT for each of the evaluator’s input wires. For a sequence with s nu-
cleotides and using a two-bit representation of each nucleotide, the boolean circuit that
computes the distance between two sequences will have 2s input wires for each party

input. Therefore, each party executes the following number of OT executions (V7):

Ng)T = 28N3j(a0
= 2sM?*(n —1).

It is important to note that NéT is independent of the size of the boolean circuit used,
i.e. it is independent of the distance metric d used in the protocol. This is a consequence
of using the Yao protocol where the number of OT only depends on the input size. In
case we were using GMW [24] protocol, the number of OT per party would depend on
the size of the circuit.

As mentioned in Section 5.6.1, in case the number of oblivious keys generated is scarce
compared to the number of OT required, we can use the II§BS protocol to generate the
base OT used within OT extension protocol. In this case, we just have to generate

TIBBCS protocols per Yao execution: L] p = kN3, = wM?(n — 1).

Oblivious keys

At this point, we can easily deduce the size of oblivious keys that each pair of parties
have to generate when using messages of size [.
In case we use IISBCS protocol to generate the final OT:
L), = 2INY;
= 4sIM*(n —1).

Also, we can use the number of OT executions per party and the analysis from Table 4.5

and [51] to compute the computational and communication complexity (in bits) of [TSBCS:
Clomp = SIN{p

= 16sIM?*(n — 1),

Cgomm = 3lNéT
= 6sIM*(n—1).
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In case we use IISBCS protocol to generate the base OT, the total size of oblivious key
required is:
L = 2INjop
= 2kIM*(n —1).

QRNG

The QRNG has to generate twice the total length of oblivious keys, i.e. Lorne = 2Lok.

Internal computation

Number of internal computations per party:

: M M!
N = S
=) = wary

Encryption keys

As discussed before, for every party P?/, P' (¢ # j) has to receive from P; the distances
known by P; that P; does not have access. So, P; has to send M2(n — 2) + N/ distance
values to P,. Consequently, the length of the QKD key used to send these distances to P,
is:

32(M2(n — 2) + Ni,),

for a 32—bit number representation. Therefore, the total size of key shared between two
parties P; and P, must be:
Llg = 64(M*(n — 2) + Nin).
Also, each party must have an overall shared key of:
Liga =Y Liga = 64(n = )(M?(n = 2) + Nj,).
i#]
5.8.2 Use case

We now present the scenario used to test and compare both quantum-assisted and classical-
only approaches. We start by exploring the complexity analysis and the OT comparison
carried out in previous sections. We extend this analysis in the next section with a testbed
implementation.

We consider a scenario where three parties n = 3 have M SARS-CoV-2 genome se-

quences (with length s = 32000) and want to privately compute a phylogenetic tree from
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Parameter Formula Amount Generation Time

L, 4sIM?(n — 1) 3.3 x 10° bit 5m30s
L 2kIM?*(n — 1) 6.6 x 10° bit 0.64s
Liypn 8sIM?(n — 1) 6.6 x 107 bit 28s
Ll 64(n — 1)(M?(n —2) + (Y)) 18.6 x 10° bit 1.9 x 1073
N, M?*(n—1) 200

N 2sM?(n — 1) 12.8 x 10°

N op kM?(n — 1) 25.6 x 10°

N, () 1

Table 5.1: Complexity analysis where n = 3, M = 10, s = 32000 and [,k = 128. Lgk:
size of total oblivious key. L : total size of oblivious key for base OT. Ljgnq: random
bits generated by QRNG. Lgkd: total size of QKD keys. N{'(ao: number of Yao protocol

executions. N}p: number of OT executions. N} yp: number of base OT executions. Nj,:
number of internal computations.

them. In the next section we consider a varying number of sequences, but, for now, we set
M = 10. Following a standard choice [3], we consider garbled circuit keys with [ = 128
bits, computational security parameter with x = 128 bits and statistical security param-
eter with w = 64 bits. For these parameter values, we can instantiate the expressions
deduced in the complexity analysis (Section 5.8.1). This information is summarised in
Table 5.1. As expected, the total size of oblivious keys (Lgk) required for a scenario where
[1BBCS is the main OT protocol is three orders of magnitude higher than the case where
TIBBCS serves as a base OT protocol in KOS15 (7, ). Also, we note that the total size
of symmetric keys required in the protocol (Lgkd) is much smaller than that of oblivious
keys (L, and Lj ), pointing to the fact that its management should be less expensive

than the oblivious keys management system. This will be discussed further in the next

section.

We can also estimate the time required to generate the keys based on their size. If
we consider state-of-the-art rates of 10 Mbit/s for both QKD and QOKD systems [258]
and a rate of 240 Mbit/s for QRNG (ID Quantique QRNG PCle cards [259]), we would
need around 5 minutes for Lf;k, 0.64s for L{)Ok, 28s for LéRNG and 1.9 x 1073s for Lgkd.
Note that we can significantly reduce the time of the precomputation phase in case we
integrate [I§BCS with KOS15 OT extension protocol.
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5.9 Performance evaluation

In this section, we set out to explore and compare the performance of two implemen-
tations of the proposed secure phylogenetic tree computation (A%): classical-only and
quantum-assisted. The quantum-assisted system replaces Libscapi base OT (SimpleOT
[247]) implementation with the TIBBCS protocol presented before (Figure 4.4). It also
uses symmetric keys along with one-time pad to encrypt distance values as described in
Section 5.5. More specifically, we benchmark our implementation for the duration of its
main components: circuit generation, communication, (internal) computation and SMC
operation.

Here, we do not assess the generation performance of both symmetric keys and oblivious
keys. We precompute these keys using a simulator that mimics the structure of the
quantum generated keys and we do not include their generation time in the performance
analysis. The reason for this is twofold: performance in quantum cryptography is an
active field of research with no clear way on how to be compared with classical approaches;
quantum generation of both keys (symmetric and oblivious) can be precomputed without
depending on the parties’ inputs and used later as a resource in the execution of the

system.

5.9.1 Setup

We leverage a testbed on a virtual environment composed of three Ubuntu (64-bit) 16.04.3
Virtual Machines (VM) with 3GB of RAM. The virtual environment was created using
VirtualBox and the VMs were running on a 2.6 GHz Intel Core i7 processor.

The performance of the implementation was measured on the VMs with the clock
type CLOCK_REALTIME from the C++ library time. Although the values might differ for
different host machines, this method is certainly adequate to use as a comparison between
a classical-only and a quantum-assisted system.

We follow the scenario presented in Section 5.8.2, where we have three parties (n = 3)
owning at most ten sequences (M < 10) with 32 000 nucleotides. For the sake of compar-

ison, we use the Jukes-Cantor phylogenetic distance along with PHYLIP implementation
of UPGMA algorithm, i.e. (d,a) = (JC,UPGMA).

Sequences preprocessing

The 30 sequences used in this testbed were taken from GISAID database [260] which
collects SARS-CoV-2 genome sequences. These sequences were then aligned using the
Clustal Omega API [261]. After alignment, the sequences (4-based) were translated to
bits according to the following rule: A — 00, C' — 01, G — 10 and T" — 11. Note
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Min. Time  Time N9 of gates Depth

Os 1m42.7s 2489218 29771
100s 3m30.7s 2205372 21711
200s om9.3s 2205372 21711

Table 5.2: Generation of Jukes-Cantor boolean circuit. Min. Time: Minimization Time.

that this alignment procedure is not privacy-preserving and was only used for testing
purposes. A privacy-preserving alignment can be easily executed if all parties agree on a

public reference sequence and align locally their sequences against this reference.

5.9.2 Circuit generation

As mentioned above, the CBMC-GC tool can generate a boolean circuit description of the
phylogenetic distance from its corresponding ANSI-C code. In Table 5.2, we present the
generation time of the Jukes-Cantor boolean circuit for three different minimization time
values (CBMG-GC parameter). The minimization time is a parameter of the CBMC-GC
tool that regulates the time spent to minimize the size of the boolean circuit. We note
that the generation of the circuit only has to be carried out once. From Table 5.2, we can
see that the minimization time for values above 100s does not have a great impact on the
minimization of both the number of gates and circuit depth. The C code describing the

Jukes-Cantor distance is shown in Appendix A.

5.9.3 System execution time

We start by recalling that the proposed secure algorithm is divided into the following

parts:

1. Distance Matrix, DM:

(a) Pairwise SMC computation of distances, SMC;
(b) Pairwise internal computation of distances, IC;

(¢) Sending/Receiving other sequences, Com;

2. Phylogenetic computation, A.

We join the internal computation of sequences and PHYLIP phylogenetic computation
into the same category and assess three different components for both classical and quan-
tum runs: Communication (Com), SMC (SMC) and Computation (IC, A). In Tables 5.3
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N© of Seq. 2 4 6 8 10

Comm. 3,95% 0,98% 0,44% 0,25%  0,16%
SMC 95,95% 98,94% 99,48% 99,68% 99,77%
Comp. 0,10% 0,08% 0,07% 0,07%  0,07%

Table 5.3: Percentage weight of each component in the classical-only system.

N© of Seq. 2 4 6 8 10

Comumn. 3,75% 093% 039%  0,22%  0,14%
SMC 96,15% 98,99% 99,55% 99,72% 99,81%
Comp. 0,10% 0,07%  0,06%  0,06%  0,05%

Table 5.4: Percentage weight of each component in the quantum-assisted system.

and 5.4, we show the proportion of each component. As expected, in both systems the
pairwise SMC computation of distances represents the greatest portion, accounting for
more than 95% of the time for all different numbers of sequences. However, the weight of
SMC in the quantum-assisted system is consistently higher than the classical-only system
for all cases. This can be explained by the fact that the quantum-assisted SMC takes
longer than the classical-only SMC.

Figure 5.6 present us with the average duration of both systems with standard deviation
as error bars. Here, we see that the quantum-assisted approach has a higher cost than the
classical-only implementation. As discussed in Section 5.6.1, we can either use the [1§B€S
protocol as the main OT in the Libscapi implementation or we can use it as a base OT in
the KOS15 OT Extension used by Libscapi. Since we have implemented the latter, our
[I8BCS is competing against the SimpleOT [247] base OT implementation. As analysed
by the authors (Section 4 [51]), the ITISBCS transfer phase is expected to outperform base
OT implementations and to have comparable performance to OT Extension protocols.
However, these analyses only compared cryptographic and computational operations and
did not take into account implementation constraints and memory complexity.

In the quantum-assisted implementation, we separate the precomputation phase (gen-
eration of symmetric and oblivious keys) from the secure computation phase of the pro-
posed protocol, AY. For this reason, it is necessary to develop a key management system
to save and keep key synchronization between parties. Consequently, the key management
system becomes the bottleneck as the number of sequences increases. In particular, the

key management system of oblivious keys is responsible for most of the overhead (Fig-
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Figure 5.6: Total running time of both quantum-assisted and classical-only systems.

ure 5.7). We refer to the difference between the quantum-assisted and the classical-only

system as the overhead of the quantum-assisted system.

The reason for oblivious keys management to be more expensive than symmetric man-
agement and to be the main cause of overhead is twofold: the total size of oblivious keys
used is three orders of magnitude higher than that of symmetric keys (compare Lgk 4 and
Li ., from Table 4.5); oblivious keys are saved in files (slower access) whereas symmetric
keys are loaded into RAM memory (faster access). The main reason for oblivious keys
to be managed from a file system is that it allows to use Libscapi implementation of Yao
protocol in a modular way, i.e. we only have to change the type of base OT used by

Libscapi implementation without tailoring any other module.

As the management of files is time-sensitive to their size, the proportion of time of
the system’s overhead due to the oblivious key management system (OKMS) increases
with the number of shared keys per party. This can be confirmed by Figure 5.8 which
shows the proportion of time spent by the oblivious key management system during the

overhead of the quantum-assisted system.

Future work is required to develop more efficient oblivious key management systems.
Despite this difference, we stress that the quantum-assisted system has a significantly

higher degree of security against quantum computer attacks.
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Figure 5.7: Total running time of the pairwise SMC computation of distances for both
quantum-assisted and classical-only systems.
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Figure 5.8: The proportion of the quantum-assisted system’s overhead that is attributable
to the Oblivious Key Management System (OKMS).
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5.10 Conclusion

In this chapter, we presented an SMC protocol assisted with quantum technologies tailored
for distance-based algorithms of phylogenetic trees. It is a modular protocol that uses
one distance metric taken from four possible evolutionary models (Jukes-Cantor, Kimura
2-parameter, F84 and LogDet) and three different protocols (UPGMA, Neighbour-Joining
and Fitch-Margoliash). In total, we can implement twelve different combinations of pro-
tocols.

The proposed system is based on ready to use libraries (CBMC-GC, Libscapi and
PHYLIP) that are integrated with quantum technologies to provide a full quantum-proof
solution. We use the quantum version of primitives that play a central role in the security
of the system: oblivious transfer, encryption and random number generation.

We compare the performance of a classical-only and a quantum-assisted system based
on simulated symmetric and oblivious keys. Previous analyses on the computation and
communication complexity point to a scenario where the quantum-assisted version does
not add an extra efficiency cost. This is confirmed by comparing the running times of both
approaches without considering the overhead created by the oblivious key management
system that increases with the number of shared keys. Further work is required to develop
more efficient key management systems. Despite this extra cost, the quantum-assisted
version significantly improves the system security when compared with the classical-only

as it renders a protocol with enhanced security against quantum computers.
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Chapter 6
Quantum oblivious linear evaluation

Oblivious Linear Evaluation (OLE) is a cryptographic task that permits two distrustful
parties, say Alice and Bob, to jointly compute the output of a linear function f(z) = az+b
in some finite field, F. Alice provides inputs a,b € F and Bob provides x € F, while the
output, f(z), becomes available only to Bob. As the parties are distrustful, a secure OLE
protocol should not permit Alice to learn anything about Bob’s input, while also Alice’s
inputs should remain unknown to Bob. OLE can be seen as a generalization of oblivious
transfer (OT) [55], a basic primitive for secure two-party computation, which is a special
case of secure multi-party computation [10, 262, 263]. OT has been shown to be complete
for secure multi-party computation, i.e., any such task, including OLE, can be achieved

given an OT implementation.

Impagliazzo and Rudich proved that OT protocols require public-key cryptography
and cannot just rely on symmetric cryptography [40]. Consequently, OLE cannot rely
on symmetric cryptography either, and we need to resort to public-key cryptography.
However, Shor’s quantum algorithm [29] poses a threat to the currently deployed public-
key systems, motivating the search for protocols secure against quantum attacks. Bennet
et al. [6] and Crépeau [264] proposed the first protocols for quantum OT (QOT). As far
as quantum OLE (QOLE) is concerned, to the best of our knowledge, no protocol has
been proposed as of now. Analogously to the classical case, it is expected that one can
implement QOLE based on QOT protocols. That said, in this work we propose a protocol
for QOLE that, additionally, does not rely on any QOT implementation.

OLE is commonly generalised to vector OLE (VOLE). In this setting, Alice defines
a set of k linear functions (a,b) € F* x F* and Bob receives the evaluation of all these
functions on a specified element x € F, i.e. f := ax + b. One can think of VOLE as the
arithmetic analog of string OT and show how it can be used in certain Secure Arithmetic
Computation and Non-Interactive Zero Knowledge proofs [71]. Ghosh et. al put further
in evidence the usefulness of VOLE by showing that it serves as the building block of
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Oblivious Polynomial Evaluation [67], a primitive which allows more sophisticated appli-
cations, such as password authentication, secure list intersection, anonymous complaint
boxes [265], anonymous initialization for secure metering of client visits in servers [266],
secure Taylor approximation of relevant functions (e.g. logarithm) [267], secure set inter-
section [268] and distributed generation of RSA keys [269]. We also show how our QOLE

protocol can be adapted to achieve secure VOLE.

6.1 Contributions overview

We present a quantum protocol for OLE with universally composable security (quantum-
UC security, see Definition 6) in the Fcom—hybrid model, i.e. when assuming the
existence of a commitment functionality, Fcom (see Figure 2.5). To obtain a secure
protocol, we take advantage of the properties of mutually unbiased bases (MUBs) in
high-dimensional Hilbert spaces with prime and prime-power dimension. Such a choice
is motivated by recent theoretical and experimental advances that pave the way for the
development and realization of new solutions for quantum cryptography [43-47, 270-275].
To the best of our knowledge, our protocol is the first proposal of a QOLE protocol proved
to be quantum-UC secure. Moreover, it is not based on any QOT implementation which
would be the standard approach. To prove its security, the only assumption we make is
the existence of a commitment functionality. We consider the static corruption adversarial
model with both semi-honest and dishonest adversaries. Finally, we modify the proposed

protocol to generate quantum-UC secure VOLE.

Main tool. The proposed protocol llqoLg (see Figure 6.5) is based on the fact that in a
Hilbert space of dimension d (isomorphic to Zy) there exists a set of MUBs {|eZ) }, vz,
such that, upon the action of a certain operator V!, each basis element r is shifted by

some linear factor ax — b inside the same basis z:

Vab ler) = Ca,b,z,r ‘egzp—b+r> ) (6.1)

where a, b, z,7 € Zyg = {0,1,...,d—1}. If Alice controls the operator V? and Bob controls
the quantum state |e?), they are able to compute a linear function f(z) = ax — b where
effectively Alice controls the function f = (a,b) and Bob controls its input z. Moreover,

since Bob controls = and r, he can receive f(x) by measuring the output element.

Protocol overview. In a nutshell, the QOLE protocol (see Figure 6.5) with inputs
f = (a,b) from Alice and z from Bob is divided into two main phases. In the first quantum

phase, Alice and Bob use high-dimensional quantum states to generate n random weak
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OLE (RWOLE) instances, where n is the security parameter. In this phase, Alice outputs
n random elements f? = (a?,0?), and Bob outputs n elements (29,4 = f?(2?)). These
instances are considered to be weaker because Bob is allowed to have some amount of
information about the n outputs of Alice (a?,0?). In the second post-processing phase,

Alice and Bob use classical tools to extract one secure OLE from the aforementioned n

mstances.

More specifically, in the quantum phase, Bob randomly generates m = (1+t)n quantum
states ‘ef? > and sends them to Alice. Then, Bob commits to his choice (z9,r;), Vi €
[m], where for any [ € N, [I] denotes the set {1,...,l}, using an ideal commitment
functionality, Fcom, and Alice asks to verify a subset T' of size tn of these commitments.
This intermediate commit-and-open step allows Alice to test Bob’s behaviour and ensure
that he does not deviate too much from the protocol, and it is a common method used
in security proofs of QOT protocols [37, 89]. If Bob passes all the tests, Alice randomly
ef§>, fori e [m]\T.
For the rest of this section we relabel and denote [n] = [m] \ 7. According to the
> and she sends them to Bob,

R

0
generates (a?, b?) and applies Vabg to the remaining n received states

expression (6.1), the output states are given by ezgngb? .
who outputs ¢? = a?2? — b by measuring the received states in the corresponding basis
2Y and subtracting r;, Vi € [n].

The post-processing phase uses two subprotocols: a derandomization step (see Figure
6.3) and an extraction step (see Figure 6.4). The derandomization step is based on the
protocol IIg; from [276] and transforms the n RWOLE instances into n weak OLE
(WOLE) instances with inputs (a;, b;)icn) chosen by Alice and inputs x; for ¢ € [n] chosen
by Bob. The extraction protocol uses the so-called Multi-linear Modular Hashing family,
MMH?*, of two-universal hash functions [84] to render Bob’s information on Alice’s system
useless and to extract one secure OLE out of n instances of WOLE. In the extraction phase,
Alice samples a two-universal hash function g, from MMH* and sends it to Bob. Then,
with adequately-crafted vectors (a,b) = ((a1,...,a,), (b1,...,b,)), Alice has a = g.(a)
and b = g,(b), and Bob outputs y = ¢.(y), where y = ax + b after point-wise vector

multiplication with the constant vector = (z,. .., z).

quantum-UC security. Due to the quantum nature of the states

x9 .
67«;> , a dishonest
i€[n
Alice is not able to distinguish which bases z?,i € [n] are used by Bob. From her point of
view, Bob’s states are maximally mixed and therefore completely hide x¥. This is enough
to ensure that, in the derandomization step, Alice does not receive any information about
Bob’s final input x. For a dishonest Bob, to correctly pass all Alice’s tests, it means
he did not cheat at all rounds with overwhelming probability. This ensures that he

177

has some bounded information on Alice’s random elements (af, bY);e}n), and using privacy
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amplification techniques in the extraction step, Alice can guarantee that Bob’s information
about her final input (a,b) is the same as in the case of an ideal OLE functionality, i.e.

the probability distribution of a is close to uniform.

Turning this intuition into a quantum-UC security proof requires some additional in-
sights. First, we need a way to quantify Bob’s information on Alice’s elements (a?, bY)
after the testing phase and the application of the corresponding V;bog operators, for i € [n];
for this purpose we use the quantum min-entropy (see Deﬁnitionl?)). We follow the ap-
proach of [37] to guarantee that Bob does not significantly deviate from the protocol in
all the rounds, and we use Theorem 1 from [81] to compute a concrete lower bound of
0 40

Bob’s min-entropy on Alice elements (a3, b})icf,). Along with Lemma 11, we have that
a = gx(a) is close to uniform, which is sufficient to prove that Bob does not know more

about (a,b) than what the output y = az + b reveals.

In order to show that the protocol llqoLg is quantum-UC secure, we need to show
that an ideal execution of IIqorLg with access to Forg (Figure 2.3) is indistinguishable
from a real execution of the protocol from the point of view of an external entity called
the environment. To prove this indistinguishability, we have to build a simulator that
simulates the execution of the protocol in the ideal setting and generates messages on
behalf of the honest simulated parties, while trying to extract the dishonest party’s inputs
and feed them in Forg. In particular, for a dishonest Alice, we have to demonstrate
the existence of a simulator, S4, that generates messages on behalf of honest Bob and
extracts Alice’s input (a, b) which, in turn, feeds into Forg. To this end, we consider that
S, simulates an attack by Bob at all rounds, 7, of the protocol which allows to extract
the m values of Alice (a?,b}). However, the commit-and-open scheme described above is
designed to catch such an attack, and to work around this issue we substitute the ideal
commitment functionality, Fcom, with a fake commitment functionality, Frakecom, that
allows S4 to open the commitments later [89]. From the remaining n values (a?, 1?), Sa

computes Alice’s input (a, b) and feeds it to Forg.

For a dishonest Bob, we have to show the existence of a simulator, Sg, that generates
messages on behalf of honest Alice and extracts Bob’s input . We assume that Sp has
full control over Fcom, which means that it has access to Bob’s m committed values

(29, 7r;); the input = can be easily extracted from these values.

Protocol generalization. We start by generalizing the main relation (6.4) to Galois
Fields of prime-power dimension, GF(d™) for M > 1. Then, we show how we can obtain
a protocol for quantum VOLE. In particular, from n WOLE instances, we are able to
generate a VOLE with size proportional to n, and we bound this proportion by the min-

entropy value on the WOLE instances.
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6.1.1 Organization

In Section 6.2, we introduce the main tool used in the QOLE protocol. In Section 6.3,
in order to build some intuition, we present a QOLE protocol that is secure only if we
consider Bob to be semi-honest; in case Bob is dishonest, its security is compromised.
In Section 6.4, we construct a secure protocol that comprises the first part of our main
QOLE protocol presented in Section 6.4.2. Next, in Section 6.5, we prove the security of
the QOLE protocol in the quantum-UC framework. Then, in Section 6.6, we show how
to generalise the presented QOLE protocol to Galois Fields of prime-power dimensions

and we also present a quantum-UC secure protocol achieving VOLE.

6.2 Mutually unbiased bases

In this section, we present the basics and some properties of mutually unbiased bases
(MUBSs) in some high-dimensional Hilbert space H?. This is the main tool that is used

in our protocol. For more details about MUBs see [44].

Definition 9. Let By = {|t1),...,|¢Ya)} and By = {|é1),...,|¢a)} be orthonormal
bases in the d-dimensional Hilbert space H®. They are said to be mutually unbiased if
| (Wilg;) | = \/La for alli,j e {1,...,d}. Furthermore, a set {By,...,B,} of orthonormal
bases on H? is said to be a set of MUBs if, for every i # j, B; is mutually unbiased with
B;.

MUBs are extensively used in quantum cryptography because, in some sense, these
bases are as far as possible from each other and the overlap between two elements from
different bases is constant. Let {[0),...,|d —1) } be the computational basis of H,
d/:/l> } be the dual basis which is given by

the Fourier transform on the computational basis:

where d is a prime number, and { ‘(~)> yeees

where w = e’d". We can easily verify that the computational basis and its dual basis are

mutually unbiased, and we will make use of the following two operators, V.2 and V{, to

encode Alice’s functions during the first (quantum) phase of the protocol.

Definition 10 (Shift operators). The shift operator V) shifts the computational basis by
a elements, i.e.
VOli) =i+ a).

Similarly, the dual shift operator V¥ shifts the dual basis by b elements, i.e.
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V1) =i =b).

The operators V0 and V> are diagonal in the dual and computational basis, respec-

tively!, i.e.
d—1

d—1
VY= w |§)] and V=W iXi].
j=0 =0

Furthermore, following the convention from [44], we can define

d—1
Vo= V0 = 3wyl
1=0

obtaining the so-called Heisenberg- Weyl operators. These operators form a group of uni-
tary transformations with d? elements; the group has d + 1 commuting abelian subgroups
of d elements, and for each abelian subgroup, there exists a basis of joint eigenstates of all
V¥ in the subgroup. These d+ 1 bases are pairwise mutually unbiased. Let x € Zg label
the abelian subgroups, let [ € Z; label the elements of each subgroup, and let U denote
the corresponding subgroup operators. Finally, let the :—th basis element associated with
the z—th subgroup be denoted by |e¥). Then, it can be seen that [44],

T
)

wfilJril(l;l)z |l> :

d—1
Uf =) w'lei)ef| and |ef) =
i=0

S
S

Iy

o

where

Uf = af V™ with af = w 02,

One can show that

V21ed) = Coap |€hoy) s @ € Zg and V' |ef) = cqap |el) for z =d,

or more generally

. (a+1)
‘/ab |€:> = Cabx,r |6§m—b+r> ) with Cabx,r = war+a a2 z (62)

'Note that V) and V[)b can be seen as a generalization of the Pauli X and Z operators, respectively.
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Proof. By definition, we have that

d—1
T 1 a S NG §
Viler) = VE}:w“+”%+wMMw HE
k,1=0

d—

1
1 -1
— (I4+a)b, —rl+ T |l
E w w 2 +a)
Vd
1=0

d—

1
1 —a)(l—a—
\/E § wlbw—r(l—a)—l-i(l )(12 Dy |l>

=0

war d—1 71(7b+7') l(l_l)m+lax+a(a+1)$
= E w w2 2 ’l>
=0

Vd

war -1 Wi—1) (at)
_ E :w—l(—b+r)w 5—r—laz+ |l>
=0

Vd

u.(a+1)
ar+
— E w—l(aa: b+r)+ l(l Dy

a(a+1) |6

war—i— ar— b+r> .

]

This last property is the main ingredient for the construction of our protocol as it
encodes a linear evaluation based on values a, b and = € Z4?. In our protocol, we take
a,b — that determine the operators V. — to be Alice’s inputs and z to be Bob’s input.

Finally, let us see how the operators V? act on the so-called generalised Bell states,

since Bob’s attack to the protocol is based on that. We start with the definition of the

seed Bell state
1 »
= ﬁ E ()

where the map [¢)) — [10*) is defined by taking the complex conjugate of the coefficients:

=D Bili) > ) = 8713

Using the properties of the operators V*, we can derive the rest of the generalised Bell

states from the seed state, as

d—

=3 i), (63

=0

[y

Bap) = (1®V,)|Boo) =

ﬂ

2While z € Zgy1, henceforth we consider z € Zg, since we only use d out of the d + 1 MUBs.
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and one can prove that the set {[Bq;)}(ap)ezz constitutes an orthonormal maximally

entangled basis in the Hilbert space of two-qudit states [44].

6.3 Semi-honest QOLE protocol

In order to build some intuition on the proposed protocol for QOLE, we start by presenting
a simpler protocol that is only secure under the semi-honest adversarial model. This
semi-honest version leverages the properties of MUBs explored in Section 6.2 and, in
particular, the one presented in expression (6.2). As we saw, given the set of MUBs
{le®)}rez,, Vx € Zg4, the operators V simply permute the elements inside the basis z,

according to a linear combination of the elements a, b, x and r:

Vab |€f> = Cab,x,r ‘eﬁz—b+r> . (64)

Alice and Bob can use the above property to compute together a linear function f(z) =
ax — b, where Alice chooses the parameters a and b, and Bob chooses the input element z.
The protocol summarized in Figure 6.1. Bob starts by choosing a basis x and an element r
therein, and prepares the state |e¥): the basis choice x plays the role of the input element
x, and the basis element 7 is used to enhance Bob’s security against a potentially dishonest
Alice. Then, he sends the state |e*) to Alice, who, in turn, applies on it the operator V?
and sends back to Bob the resulting state. According to (6.4), Bob receives |e§x_b )
measures it in the z basis, and outputs the linear function evaluation f(z) = ax — b by
subtracting r. Thus, the correctness of the protocol is ensured by expression (6.4).

As far as the security of this protocol is concerned, we can easily see that it is secure
against a dishonest Alice. From her point of view, all the density matrices describing the
several possible cases for x = 0,...,d — 1 are maximally mixed states. Therefore, she
cannot know anything about the value of x.

If, moreover, Bob is semi-honest the protocol remains secure. On the other hand, if
Bob is dishonest and deviates from the protocol, he is able to find out Alice’s inputs a
and b with certainty. In Section 6.2 equation (6.3), we saw that the generalised Bell basis
is generated by Alice’s operators, V2, i.e. |B,p) = (1 ® V,?) |Byo), and Bob can make use
of this property in order to extract her inputs a and b. His attack can be described as

follows:

1. Bob prepares the state |Byg) and sends the second qudit to Alice.
2. Alice applies her chosen operator V.
3. Bob measures both qudits in the generalised Bell basis and outputs a, b.
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Semi-honest QOLE

Alice’s input: (a,b) € Z3
Bob’s input: x € Z,

1. Bob randomly generates r € Zy. He prepares and sends the state |eF) to Alice.

2. Alice prepares the operator V according to her inputs a and b. She then
applies V? to Bob’s state: V.’ [e®) = c;ap, |e§x_b +,)- She sends the resulting
state back to Bob.

3. Bob measures in the basis x, subtracts r, and outputs the desired result
ax —b=: f(x).

Alice’s output: L
Bob’s output: f(z)

Figure 6.1: Semi-honest QOLE protocol.

It becomes clear that the protocol is secure only as long as Bob does not deviate from
it; a dishonest Bob can break its security by performing the above attack. Therefore,
we have to make sure that Bob sticks to the protocol. To achieve this, we apply a
commit-and-open scheme [37] that can be briefly described as follows: Bob runs step 1.
of the Semi-honest QOLE protocol (see Figure 6.1) multiple times, say m in total, for
multiple values of z;, and r;, for i € [m] and commits to these values by means of the
functionality Fcom (see Figure 2.5). Then, he sends these states to Alice, who, in turn,
asks him to disclose his chosen z;’s and r;’s for some of the m instances that she chooses.
The functionality Fcom forwards these committed values to Alice and she measures the
corresponding received states in the disclosed bases. She can, thus, verify whether she got
the right basis element for all the instances she chose to check. If Bob had used the Bell
state | Bo,) in one out of the m instances, then the probability of Alice getting the correct
result after measuring the state in the committed basis would be é. In other words, Bob
would get caught with high probability 1 — %l. Furthermore, if he chooses to attack all
the instances, the probability of Alice getting correctly all the results is negligible, i.e.
exponentially small in the number of instances, m. We explore this in detail in the next

section, where we present a QOLE protocol secure against dishonest adversaries.
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6.4 QOLE protocol

Our QOLE protocol is divided into two main phases: a quantum phase and a classical
post-processing phase. The first phase uses quantum communication to generate several
instances of OLE with random inputs. These instances may leak some information to the
parties, therefore we refer to them as random weak OLE (RWOLE). The second phase is
purely classical. It uses the RWOLE instances and extracts one classical OLE instance.
The post-processing phase has two phases. It implements a derandomization procedure
followed by an extraction phase that serves as a privacy amplification method. The full
protocol is presented in Figure 6.5. Before we continue, it is worth mentioning that we
consider that neither dishonest party maliciously aborts the protocol. Indeed, in our
setting, such a behaviour does not provide an advantage for learning the other party’s
input. The only case to abort the protocol is when honest Alice catches Bob cheating
during the commit-and-open stage.

In the next sections, we break down the protocol, show its correctness and retrieve
some technical lemmas used for the security proof. In Section 6.5, we prove the protocol

to be secure in the quantum-UC model against static dishonest adversaries.

Notation. During the RWOLE phase, Fo = (FY, FY, ..., F?) is the vector whose com-
ponents are the random variables associated to Alice’s functions. Each F? ranges over
the set of affine functions in Z4 such that P(F?(z) = alz + b)) is uniform for all ¢ € [n].
We do not distinguish the set of affine functions in Z,; from Z2. The classical values
F are saved in the Hilbert space Hg,. The same holds for the derandomization phase,
where F' denotes the random variable for Alice’s functions in the protocol {yorLe. Xo
and Y are the random variables for xg,y, € Z} in the RWOLE phase. and X and Y the
corresponding random variables for x,y € Z} in the post-processing phase. Also, we use
A’ and B’ to denote the system that a dishonest Alice and Bob, respectively, hold at the

end of the execution of the protocol.

6.4.1 RWOLE phase

We now introduce the quantum phase of the proposed QOLE protocol, which we infor-
mally call the random weak OLE (RWOLE) phase. We denote by IIiworg the protocol
that implements this RWOLE phase and we present it in Figure 6.2. The protocol II}worg
is divided into four phases: Initialization, Test, Computation and Measurement.

If both parties are honest the protocol is correct: if Alice is honest, her functions Fy
are chosen uniformly at random, and if Bob is honest he will obtain ’ezgngbg +n>

i€[n]
according to Equation (6.4).
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Bob, we must bound the min-entropy Hp,(Fo|B’)

Protocol IlgwoLs
Parameters: n, number of output qudits; ¢, proportion of receiver test qudits.

(Initialization Phase:)

1. Bob randomly generates m = (1 + t)n different pairs (2?,7;) and commits

to them by sending (commit, (i,2%,7;)) to Fcom. He prepares the states
0

eff> and sends them to Alice.
1€[m)|

(Test Phase:)

2. Alice randomly chooses a subset of indices T C [m] of size tn and sends it to
Bob.

3. Bob sends (open,i), ¢ € T, to Fcom and Fcom sends to Alice
(open, (i,29,7;)),i € T.

4. Alice measures the received qudits in the corresponding z{ basis for i € T,
and checks whether the received commitments are compatible with her mea-
surements. In case there is no error she proceeds, otherwise she aborts. After
the Test Phase, we relabel and identify [n] = [m] \ T

(Computation Phase:)

ObQ

0
6. Alice randomly generates n pairs (a;,b;) and prepares Vab(} for i € [n].

0
T

>, for i € [n], and sends the resulting states to Bob.

0

7. Alice applies these operators to the received states, i.e. Vboi
a;

0

Ty
€ 0.0 10
a;z;—b)+r;

Ca0,00,80,74
(Measurement Phase:)

8. Bob measures the received states in the basis 2 for ¢ € [n] and gets the states

0
& oo +n> ,i € [n]. Finally, he subtracts r;, for i € [n] from his results.

Alice’s output: (a?, b)), for i € [n].

19 7%

Bob’s output: (2¥,3?), where 3? = ¢;(2) = a%29 — 1Y for i € [n].

Figure 6.2: RWOLE protocol.

Security. In the case of a dishonest Alice, it is straightforward to verify that the security
property of the semi-honest protocol still holds; following the same reasoning, we can
conclude that she cannot learn anything about Bob’s input or output values (z9,y?).
In the case of dishonest Bob, though, these random instances of OLE might leak some

information on Alice’s random functions Fy to him. To quantify this side information of

PFq B!
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output state of the real execution of IIgworg- The following lemma shows that pg,p/ is
at least e—close to an ideal state op,p independently of the attack that the dishonest
party may perform. This ideal state op,p has the important property of having a bound

on Hpyin(Fo|B') that is proportional to the security parameter.

OF, B’

Lemma 14 (Security against dishonest Bob). Let pg,p be the state given by the real
execution of the protocol Whwors, where Fy is the system saving Alice’s functions, B’ is

Bob’s (possibly quantum) system. Fiz ¢ €]0,1 — %l] and let

o —on( - )

(nt+1)(t+1)

Then, for any attack of a dishonest Bob, there exists an ideal classical-quantum state

or,p’, such that

1. OFyB' Re PR B,

2. Huin(Fo|B')oy 0 = ™21 — hy(C)),

9FyB’ 2

where hq(C) is given in Definition 1.

The proof comprises two parts corresponding to the two conditions of Lemma 14: first,
we prove that the state just before the Computation Phase is close to the ideal state op,p/;
and then, we prove that the operators applied by Alice to og,p’ increase the min-entropy
by a specific amount that is proportional to the number of output qudits, n. We present
the proof in B, where we follow the same reasoning as Damgard et al. in Section 4.3 of
[37], and adapt it to our case. We also use certain results from [81] in order to establish

the lower bound given by property 2.

6.4.2 Post-processing phase

The HEworg Protocol (see Figure 6.2) generates several instances of RWOLE, which leak
information to Bob about Alice’s inputs. In this section, we present the post-processing
phase that allows to extract one secure QOLE out of several RWOLE instances. Com-
bining these instances is sufficient to generate a secure QOLE protocol, because Bob has
only a negligible probability of attacking all the weak instances without being caught;
indeed, if he chooses to attack one of the instances the probability of Alice not abort-
ing is t%l + ﬁ, while if he chooses to attack all instances this probability becomes
d%n, which is negligible in n, thus ensuring the asymptotic security of our protocol. The
post-processing comprises two subprotocols: the first is a derandomization protocol (Fig-

ure 6.3) that integrates the randomized outputs of RWOLE into a deterministic scheme
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where Alice and Bob choose their inputs; the second is an extraction protocol (Figure
6.4) that generates a secure QOLE protocol from these deterministic weak instances by
means of a two-universal family of hash functions. Note that the classical post-processing
phase does not give any advantage to a potentially dishonest Alice, therefore we only need

to prove security against dishonest Bob.

Derandomization

Our derandomization protocol, denoted as Iy o and summarized in Figure 6.3, reduces
the randomized RWOLE instances into deterministic ones, which we informally call weak
OLE (WOLE). The output of II{, o is still a weak version of OLE because Bob is allowed
to have some knowledge on Alice’s inputs. The difference between RWOLE and WOLE is
that the parties now choose their inputs. Our derandomization protocol is an adaptation
of the derandomization protocol in [276]. We denote by * the product of two matrices of
the same dimensions, such that the result is also a matrix of the same dimensions whose

elements are the product of the respective elements of the operand matrices.

Protocol I3k

Alice’s input: (a,b) € Z2"
Bob’s input: x € Z]

1. Alice and Bob run the IIwoLg protocol and receive (ag, by) and (o, yo),
respectively.

2. Bob computes and sends to Alice ¢ =  — xy.
3. Alice computes and sends to Bobd =a —ag and s = by + a xc+ b.

4. Bob computes y =yo+x*xd —d*c+ s.

Alice’s output: L
Bob’s output: y=axx +b

Figure 6.3: WOLE protocol.

Security. The requirements to prove security against dishonest Bob are summarized in
Lemma 15, which is very similar in structure to Lemma 14. We show that the real output
state ppp’ of the protocol Il o is €é—close to an ideal state opp/, which has min-entropy
lower-bounded by a fixed value proportional to the security parameter n. Intuitively, this

means that Bob’s state is indistinguishable from a state where his knowledge on Alice’s
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inputs is limited.

Lemma 15. Let ppp be the state given by the real execution of the protocol Iy ork,
where F is the system saving Alice’s inputs, B’ is Bob’s (possibly quantum) system. Fizx
¢ €]0,1— ] and let

(6.5)

e(¢,n) = exp(— 2C0n )

(nt+ 1)(t + 1)
Then, for any attack of a dishonest Bob, there exists a classical-quantum state opp: such

that

1. oFp R pFB,

2. Hmin(F’B/) > %(1 - hd(())f

O'FB/
where hy(C) is given in Definition 1.

Proof. Alice holds the system A = FF,CDS, where F = (F,,F}) refers to her inputs
(a,b) € 72", Fy = (Fq,, Fp,) is the subsystem obtained from the RWOLE phase, and
C,D and S are classical subsystems used to save the values of ¢, d, and s from the
protocol, respectively. Bob holds the system B’ = CDSB] where C,D and S are the
subsystems on Bob’s side where the values of ¢, d and s are saved, respectively, and
B} = YE) is his (possibly quantum) system generated from the RWOLE phase.

To prove property 1., we will use Lemma 14, namely that the state pg,p; resulting
from the RWOLE scheme is e—close to the ideal state op, B} Then, we will show that
the operations applied to pp,p; during the derandomization process can only decrease
the distance between the real and the ideal output states of the WOLE protocol, thus
keeping them at least e—close. We start by specifying the operators corresponding to the
classical operations executed in steps 2 and 3 of II§yorg. In step 2, a dishonest Bob can
send to Alice some value ¢ that depends on his system B{. So, he starts by applying a
CPTP map Tp;scny : P (HB()) — P (HB() ® Hc) to his state and then projects it into
the Hilbert space H¢. The operator for step 2 is a CPTP map

O P (Hp, @ Hpy) = P (Hr, ® He @ Hp ® Hs @ Hpy)

described by his action on some general quantum state p, as

0% (p) =1 Y leXele Toycn(p) leNele @ [d)dlp © |s)sls

d,s,c

In step 3, Bob takes no action. Since Alice is honest, the operator for this step simply

describes her action on subsystems D and S according to her choice at subsystem F. This
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operator is a CPTP map
06 :P(HFO ®H0®HD®’H3®HBE]) —)P(HF®HFO ®Hc®%D®Hs®HB())

described by his action on some general quantum state p, as
1
O (p) = 2 2 P p(P*)T,
a,b

where

P =la,b)p® Y |ao, bo)ao, bols, @ [e)elg

ao,bo,c

® |la — apXa — aglp ® |by +a-c+b)by +a-c+b|g.

Note that O® adds subsystems CDS and distributes C according to Bob’s action.
The operator O®) adds subsystem F and projects DS according to the information at
subsystem FF( and the expressions of d and s. Regarding the trace distance between the

real and ideal states, we have:

v

0 (0(2) (pFoB{)) ) 0(2) (O-FoBé ))
> 5(0(3)0(2)(%35%0(3)@(2)(%33))

5(pF0B67 UFoBg)

= 5(PFB’7UFB’)-

For the above inequalities, we took into account that O and O®) are CPTP maps, and
as such they do not increase the trace distance (see Lemma 1). For the last equality,
recall that B’ = CDSBj,. Now, from Lemma 14, we have that op,p;, ~. pr,p,- Hence,

we conclude that 6(ppp/, orp) < €(¢,n) for €((,n) given as (6.5), i.e. opp =, prp.

We move on to prove property 2. Consider the bijective function g : 72" — 72"
given by
g (xy) = (@ +d s —y— (x+d)xc)

for fixed ¢, d and s. Essentially, g%° describes how the input vector (a, b) is related to
the RWOLE output vector (ay, b):

(a,b) = g>**(ag, by) = (ag +d,s — by — (ay + d) * c). (6.6)

Intuitively, this means that the subsystem F is defined by the subsystems FyCDS. We
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can rewrite the action of the operator O®) on some general quantum state p as follows:
1
OP(p) = o5 2P p (P,
d,s

where

pds — Z )gcvd’s(ao,bg)><ao, bo‘F ® |ag, b, ¢, d, s)ao, by, c,d, S‘FOCDS‘

ag,bo,c

Hence, for the min-entropy bound, we have that:

Hrmn(F ‘ B/)O'FB/ - Hrmn(Faa Fb | B/)UFB/
= Hunin(99P% (Fay, i) | CDSBS)@<3><9<2>UF036
Z Hmin(Faoa Fb() | CDSB[/))O(Q)O-F B (67)
0"0
Z Hmin(Faoa Fb() | B(l))aFOB/ (68)
nlogd
50 (1 (). (6.9)

The inequality at step (6.7) comes from Lemma 4, as g®%? is bijective. The inequality at
step (6.8) comes from Lemma 10, as the operator O takes the form of O = 1 ® M,
where M is a CPTP map. The last inequality comes from Lemma 14, property 2.

Extraction

In this section, we present our extraction protocol, IlgxT, that generates one OLE in-
stance using the derandomization protocol Il{y o and the two-universal family of hash
functions, MM H* (see [84] and Definition 5). This family uses the inner product between
two vectors in the Z]; space, and since OLE only involves linear operations, we can apply
the inner product operation to all vectors a, b and y without affecting the overall struc-
ture. The protocol IIgxT is summarized in Figure 6.4 and uses the n instances of WOLE
in such a way that Bob’s knowledge on Alice’s inputs decreases exponentially with respect

to n® For this reason, n is our security parameter.
)

3This extraction step is similar to the privacy amplification step of QKD protocols.
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Protocol IlgxT

Alice’s input: (a,b) € Z3
Bob’s input: x € Z,

1. Alice chooses randomly some function g, € MM H* and sends it to Bob.

2. Alice randomly generates ao, ..., ay,,bo,...,b, < Zg. She computes a; =
(a -3, &mi)/m and b = (b -3, bmi)//ﬁl. We write a = (ay, ..., a,)
and b= (by,...,by).

3. Alice and Bob run the derandomization protocol II{yorg((@, b), ). Bob re-
ceives y as output.

4. Bob computes y = gx(y).

Alice’s output: L
Bob’s output: y

Figure 6.4: Extraction protocol.
The correctness of [IgxT is given by linearity:

Yy = gn(y):K'(a1m+bla~~anx+bn)

K - <CL Zz:QaH T+ 2122 K

, Ao + b, ..., apx + by,
R1 K1

= ax +0b.

Security. By definition, the derandomization protocol leaks some information to Bob
about Alice’s inputs (@, b). Since y = a * x + b, without loss of generality, any leakage
of Alice’s inputs can be seen as a leakage on just a. In this case, the min-entropy of
F = (F,,Fp) should be the same as the min-entropy of F,. Now, recall the ForLg
functionality definition (see Figure 2.3), and note that Bob does not possess any knowledge
about Alice’s input (a,b) other than what can be deduced from his input and output
(x,y). Similarly, since y = ax + b, Bob has some knowledge on the relation between a and
b and — as b is completely determined by (a, z,y) — we only have to guarantee that a looks
uniformly random to Bob. The role of the hash functions used in the above protocol Ilgxt
is precisely to extract a uniformly random a from the leaky vector a, while preserving the
structure of the OLE. This result is summarized in Lemma 16 and its proof is based on

Lemma 11.
Lemma 16. Let prp: be the state given by the real execution of the protocol llgxr, where
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/

F is the system saving Alice’s inputs (a,b), B' is Bob’s (possibly quantum) system. Fix

¢ €]0,1 — 1] and let

2¢%2n?
(nt+1)(t+ 1))'

Then, for any attack of a dishonest Bob, there exists a classical-quantum state oppg:, where
F = (F,, F), such that

e(¢,n) =exp <—

1. opp =¢ prp’, and

2. 0(1z, ® o1, o) < K270 where K = \/737 fa(Q) = lozgld(l = ha(C)), n is the

security parameter, and hq(C) is given in Definition 1.

Proof. To prove property 1, we note that the extraction operation applied to the output
of IIyoLg can be described by a projective operator on the space F' = (F,, F},). Therefore,
as in the case of Lemma 15, property 1 follows from the fact that CPTP maps do not
increase the trace distance (see Lemma 1).
Regarding property 2, let us first consider Bob’s subsystem F to integrate Bob’s inputs
x,i.e. = XE'. Then, his full system B’ is identified with YE = YXE’. We have:
Hoin(F|YE) = Hun(Fo, Fo| YXE')

OFYE OFYE

= Huw(Fa,Y — F,X|YXE)
= Hyw(Fo| YXE')

OF,YE
OF,YE"

Therefore,

nlogd
Hmin(Fa ’ YE)O'FGYE > 9 (1 - hd(c))'

Now, since MM H* is a two-universal family of hash functions, we can directly apply

Lemma 11 for [ = 1. It follows that Fj is £—close to uniform conditioned on Y E, i.e.

6(12, ® ovEs OF,YE) < %\/Qlogd_nlggd(l_hd(m = K270 = ¢

where K = ‘/7&, fa(¢) = 84(1 — hy(¢)) and n is the security parameter.

Now, we are in position to combine the above subprotocols (IIgwoLe: LwoLg and

HgxT) and present the full protocol oLk in Figure 6.5.
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Protocol IlgoLe

Parameters: n, security parameter; tn, number of test qudits.
Alice’s input: (a,b) € Z2
Bob’s input: z € Z4

(Quantum phase:)

1. Bob randomly generates m = (1+t)n different pairs (2, r;) € Z2 and commits to them by

X
er; )
i€[m]

sending (commit, (i,z?, Ti)ic[m]) to Fcom. He also prepares the quantum states
and sends them to Alice.
2. Alice randomly chooses a subset of indices T' C [m] of size tn and sends it to Bob.
3. Bob sends (open,i);er to Fcom and Fcom sends to Alice (open, (i, 29, 7;))ier-

4. Alice measures the received quantum states in the corresponding z{ basis for i € T, and
checks whether the received commitments are compatible with her measurements. She
proceeds in case there is no error, otherwise she aborts.

0
5. Alice randomly generates n pairs (a?, b?) € Z2 and prepares Vab[_f for i € [m]\T. We relabel
ap = (a9,...,a0), b = (b9,...,80) and =g = (29,...,29), and from now on identify

[\ T = [n].
eff> =

0
6. Alice Vi € [n] applies V% to the received state
ag
7. Bob Vi € [n] measures the received state in the corresponding basis 2?0, and gets the state

0 (0]
T q b;
er; >, i.e. Va(}
k3

0
xZ; .
C20,a0 b0, eaéw(.’—b9+7‘i>’ and sends the resulting states to Bob.

e’
a?zg 7b?+ri

write Yo = (ygv s 7yg)

>. Finally, Vi € [n] he subtracts r; from his result and gets y? = %29 — b?. We

(Post-processing phase:)

8. Bob defines x = (z,...,z) as the constant vector according to his input x.

9. Alice chooses randomly some function g, € MMH*, and she randomly generates
a9y ..., 0p,bo, ... by g Zgq. She computes a; = (a — Z?:g ami)/m and b; = (b —
S o bik;)/k1. We write @ = (a1, ...,a,) and b= (by,...,by).

10. Bob computes and sends to Alice ¢ = & — x.

11. Alice computes and sends to Bobd = a — ag and s = by +a *c+ b.
12. Bob computes y = yo + x xd — d xc + s.

13. Finally, Alice sends k to Bob and he computes y = g, (y).

Alice’s output: L
Bob’s output: y

Figure 6.5: QOLE protocol.

6.5 UC security

In this section, we will show that our protocol IlqoLk (see Figure 6.5) is quantum-UC
secure. More formally, we will show that IlqoLg statistically quantum-UC realizes (see

Definition 6) the functionality Forg in the Fcom—hybrid model.

119



Theorem 4 (quantum-UC security of IlqoLg). The protocol lgore from Figure 6.5
statistically quantum-UC realizes (see Definition 6) Forg in the Fcoom—hybrid model.

Theorem 4 is proved by combining Lemma 17 and Lemma 18 that we present below.
In the former we prove the protocol’s security for the case where Alice is dishonest and
Bob is honest, while in the latter we prove security in the case where Alice is honest and

Bob dishonest. In the first case, we have:

Lemma 17. The protocol llgorr (Figure 6.5) statistically quantum-UC realizes (see Def-
inition 6) Forg in the Foom—hybrid model in the case of dishonest Alice and honest Bob.

Proof. We start by presenting the simulator Sy for the case where Alice is dishonest in
Figure 6.6.

To prove statistical quantum-UC security according to Definition 6, we first consider
a sequence of hybrid protocols from Hy to Hy. The first hybrid protocol, Hy, in the
sequence is the real execution of the protocol llqoLk, and we gradually change it until
obtaining the hybrid Hy which corresponds to the description of the simulator S4. By
proving indistinguishaility of the hybrids throughout the sequence, we show statistical

quantum-UC security for the protocol llqoLg in the case of dishonest Alice.

Hybrid Hy: This is the real execution of the protocol llqoLg.

Hybrid H;: This hybrid is identical to the previous one, Hy, except that we replace
the functionality Fcom with a fake commitment functionality, Frakecom, in which Bob,

i.e. the honest party, can commit no value. This fake functionality works as follows:
e Commitment phase: expects a commit message from Bob instead of (commit, x).

e Open phase: expects a message (open, x) (instead of open) and sends (open, ) to
Alice.

Hybrids Hy and H; are perfectly indistinguishable, as the simulator still opens the

commitments in the same way.

Hybrid Hy: This hybrid is identical to the previous one, Hi, except that now Sy

0
prepares entangled states |By ) 0405 instead of efj> , and sends the subsystem )4
i€lm
to Alice. Additionally, upon receiving the set of indices, T', from Alice, S4 measures the
corresponding elements of subsystem Qg using ¢tn randomly chosen bases 2 and provides

(open, (i,29,7;)) to Frakecom, Vi € T
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Simulator Sy

(Quantum phase:)

1. S84 sends commit t0 FrakecOM-

2. 84 generates m = (1 + ¢)n entangled states |Boo), o, and sends subsystem
Q4 to Alice.

3. Alice asks for a set of indices T' C [m] of size tn.

4. S4 measures the corresponding elements of subsystem Qg using tn randomly
chosen bases ¥ and provides (open, (7, 2?,7;)) to Frakecom, Vi € T

5. Upon receiving the processed system Q4 from Alice, Sy measures the joint
system Q4Qs and extracts the measurement outcomes F = (ag,by) =

((a?, coad), (09 ,bg)).
(Post-processing phase:)

6. Sy randomly generates a vector ¢ and sends to Alice.

7. Upon receiving d and s from Alice, S5 extracts a and b based on its knowledge
of (ag, by) as follows:

a=b+a
° , (6.10)
b=s—-by—axc.
8. Upon receiving k from Alice, S, extracts her inputs (a, b) as follows:
=a-K
6.11
b="b-k. ( )

9. Finally, S4 sends (a,b) to the ideal functionality ForLg.

Figure 6.6: Simulator S against dishonest Alice.

Claim 5. The hybrids H; and Hs are indistinguishable.

Proof. From Alice’s point of view, the state received is exactly the same in both hybrids.

In Hy, since the elements r are chosen randomly,




for each 2° =0,...,d — 1. In Hy

14
Trqs | BooXBool = —

Thus, the environment is not able to distinguish the two scenarios. Furthermore, upon
Alice’s request of the test set, T', the simulator measures in random bases, z? for i € T,
the corresponding qudits of subsystem ()g. Since both entangled qudits in Q4Qs get
projected to the some random state, r; for ¢ € T, Frakecom provides the correct pair

(2%, 7)ier to Alice. Hence, the hybrids H; and H, are indistinguishable. O

Hybrid Hjz: This hybrid is identical to the previous one, Hy, except that now Sy
extracts Alice’s elements Fy = (ag, by) by applying a joint measurement on the systems
Q 4Qs in the generalised Bell basis.

Hybrids Hy and Hj are perfectly indistinguishable, as the simulator only changes the

measurement basis for the received state and does not communicate with Alice.

Hybrid Hy: This hybrid is identical to the previous one, Hs, except that now Sy
generates ¢ uniformly at random. Additionally, upon receiving d, s and k, the simulator
extracts Alice’s vectors (a, b) and inputs (a, b) by computing expressions (6.10) and (6.11).
Finally, S4 sends (a,b) to the ideal functionality Forg. Hybrid Hy corresponds to the

description of the simulator Sy.

Hybrids Hz and Hy are perfectly indistinguishable for the following reasons: first, from
the proof of Claim 5, we have that the vector oy looks uniformly random to Alice, and
consequently, so does ¢. Second, the extraction operations do not require any interaction
with Alice. O

We now proceed to the case where Alice is honest and Bob is dishonest. We have:

Lemma 18. The protocol llgore (Figure 6.5) statistically quantum-UC realizes (see Def-

inition 6) Forg in the Foom—hybrid model in the case of honest Alice and dishonest Bob.

Proof. We start by presenting the simulator Sg for the case where Bob is dishonest in
Figure 6.7.

Then, we consider the following sequence of hybrid protocols, from Hy corresponding to
the execution of the real protocol to Hy corresponding to the description of the simulator

Sp, and prove that they are indistinguishable in the case of dishonest Bob.
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Simulator Sg

(Quantum phase:)
1. Sp receives the qudits from Bob and tests them as in the protocol IlgoLk.

0
2. S randomly chooses vectors ag and by and applies Vabg , 1 € [n] to the received
qudits.

3. Sp extracts the input element &y from Fcom.
(Post-processing phase:)

4. Upon receiving ¢ from Bob, Sg extracts his input x as € = ¢ + x,.
5. Sp sends x to Forg and receives y.

6. Sp randomly generates the elements o <-s Zg Kk < Z) and
CZQ,...,(In,bQ,...,bn s Zd-

7. S computes V' = dxr — vy, a; = (a’ - > aiﬁi)//-@l and b, = (b’ -

2?22 bll‘il) //il.

8. Spsendsd =a —ap, s =by+ax*c+band k to Bob.

Figure 6.7: Simulator Sp against dishonest Bob.

Hybrid Hy: This is the execution of the real protocol IIqorg. In this hybrid, Sp
behaves just like honest Alice up to step 6 of IlqorLg: tests the received qudits (steps
1-4), randomly generates n pairs (af, bY);ep, (step 5), and applies the respective operators

1771

0
V;bo for i € [n] to the received states (step 6).

Hybrid H;: This hybrid is identical to the previous one, Hgy, except that now Sp
extracts Bob’s random vector g from the commitment functionality Fcon. Additionally,
upon receiving ¢ from Bob, S extracts Bob’s input z by computing ¢ + xy3. Then, Sp
sends the extracted element x to Forg and receives .

Hybrids Hy and H; are perfectly indistinguishable, because Sg only interacts with
Bob when receiving the element ¢, and this does not change anything from Bob’s point
of view. The corresponding operations are either carried out locally by Sp or along with

Fcom which, by definition, is fully controlled by Sg.

Hybrid Hy: This hybrid is identical to the previous one, H, except that now Sg

generates (a,b), d and s as follows: it starts by randomly generating a’ <—¢ Z4, k <3 Z
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and as,...,an,ba,...,b, <3 Zyg. Then, it computes b’ according to the generated a’, the

extracted element x and the output y of Forg, as b’ = a’x —y. It then masks a’ and V' as
d=a kK and bV =0b-k,

by setting a; and b; accordingly, i.e. a; = (a’—Z?:Q aim)//ﬁ and by = (b’—Z?ZQ bmi)//ﬁ.
Finally, Sp sends d = a — ag, s = by + a *xc+ b and k to Bob. This is the last hybrid of

the sequence and corresponds to the description of the simulator Sp.

Claim 6. The hybrids H; and Hs are indistinguishable.

Proof. Since, in its first two steps, Sp executes a RWOLE scheme, according to Lemma 14
we have that Sp is e—close to a situation where Bob’s knowledge on the vectors (aqg, by)

is lower-bounded by the value

for ( €]0,1 — é], n the security parameter and €(({,n) = exp(—%). Also, as Bob
receives d and s, according to Lemma 15 his knowledge on (a, b) is also lower-bounded by
the same A(¢)/n. Furthermore, since Sg defines a such that ¢’ = a - k, from Lemma 16
we can conclude that Sp is (£ + €)—close to a scenario where a’ is uniformly distributed.

This comes from the properties in Lemma 16 and the triangle inequality:

N1z, @opr, prp) < (12,08, 0p,p)+ 0(0r,B, pr,5)
2¢242p2

< K 9nfaQ) +e DD = € + €

where K = ‘/73, fa(¢) = *24(1 — h4(¢)). This means that the triple (d, s, k) only gives to
the environment a negligible advantage in distinguishing between the real and ideal world

executions. O

This finishes the proof of Lemma 18.

6.6 Protocol generalizations

6.6.1 QOLE in Galois fields of prime-power dimensions

So far, we have been working in Hilbert spaces of prime dimensions; this reflects the fact
that, for prime d, Z, is a field and, under a well-defined set of MUBs {|e¥) },cz,, V& € Zq,
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we have the affine relation (6.4):

Vab ler) = Cab,z,r ‘eix—b+r> .

In this section, we generalise our protocol, Ilqorg, to Hilbert spaces of prime-power
dimensions, N = d™ (d prime and M > 1), taking advantage of the fact that in a Galois
field of dimension d™, GF(d™), we can build a complete set of N + 1 MUBs [44].

Succinctly, in GF(d™), we identify the integers i € Zy with their d—ary representation,
le.
M—1
Zy3i=Y ind" < (i,... in-1) € GF(dM).

n=0
In these fields there are two operations, addition and multiplication, which we denote by
@ and O, respectively. Addition is straightforward, as it is given by the component-wise
addition modulo d of elements, i.e. i ®j = (ig + jo mod d,...,ip—1 + jy—1 mod d).
Considering i = 221_01 ind™ as a polynomial of degree M — 1 given by i(p) = 27]‘1/1:_01 inp",
multiplication between two elements i, 7, is given by the multiplication between the cor-
responding polynomials i(p) and j(p) modulo some irreducible polynomial m(p), i.e.

i®j = (i(p) x j(p)) mod m(p).

Analogously to prime-dimension fields, we can write the operators V,? in the computa-

tional basis, as

N-1
Ve= 3 Ik a) et (k]
k=0

and the eigenstates for the corresponding N + 1 pairwise MUBs, as

1 N—-1
%) = l o\)9(7"®l) O{x*,
| 7"> \/N ; | > ol

where af,; is a phase factor whose form depends on whether d is even or odd. For details,
see Section 2.4.2 in [44].

Given the above, we can derive the following affine relation similar to (6.4):

VI lel) = w el

€§®a6b@r> . (612)
Proof. The relation (6.12) can be easily deduced by considering the following property
from [44] (Equation (2.56) in section 2.4.2)

040 = !
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We have

1% ‘ei> =

|k‘ @ a> w(k@a)@bwer@ <k3|l> agl

1
VN
1 Iob, oro(lea) . ix
\/_N 1) ww A5 (16a)
=0
1 T a iOa i1 \*
\/N |l> wl@b@ olUS) )(w@( O] @(GZ))aaael)

|l> wl@b@r@lwg(zQaQZ)agl

S(10asbdr)Ol , ix
) w ad,

— reoa ik | 1
= W0 €igacher)

Notice that all the steps in the Ilqorg depend on the properties of the field operations
(addition and multiplication) and on the fact that expression (6.4) holds. Hence, we can
use IlqorLe adapted for the operations @ and ©, in order to quantum-UC-realize Forg

in fields of prime-power dimension d".

6.6.2 Quantum vector OLE

In the proposed protocol Ilqorg, We extract one instance of OLE out of n instances of
WOLE. As far as efficiency is concerned, it would be desirable to generate more instances
of OLE out of those n instances of WOLE. Here, we show how to use WOLE as a resource
to realize the VOLE functionality, FyoLg, presented in Figure 2.4. In this case, Alice
fixes a k (which is specified later), defines a set of & linear functions (a, b) € Fi x F} and
Bob outputs the evaluation of all these functions on a specified element = € F, that he
chooses, i.e. f := ax +b. Since IIqore can be extended to finite fields F,, where ¢ is

a prime or prime-power number (see Section 6.6.1), the Fyorg functionality can also be
defined in F,.

In the extraction phase of IlqorLg, Alice randomly chooses a function g, and applies
it to the pair (a,b). This procedure suggests that, in order to generate different input

elements (a’,b'), Alice can randomly choose another function ¢, and set a’ = g,+(a) and
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b = g (b). This is equivalent to generating a random 2 x n matrix in F, i.e.

However, in case k and k' are linearly dependent (i.e. k& = ¢k’ for some ¢ € Z;), Bob
would have some extra information about Alice’s elements (a,b) and (a',V), as (a,b) =
c(a’,t'). This leads to a situation beyond the Fyorg definition. To avoid this issue, let
us consider the set of k x n matrices with rank k& over F, for 1 < k£ < n, and denote it
by Rixn(Fy). For a binary finite field, Ryx,(F2) is a two-universal hash family [277, 278].
Similarly, one can prove that the more general set Ry, (F,) is also a two-universal hash
family from [y to IF’;. During the extraction phase of the original Ilgorg, Alice chooses
vectors (a, b) according to the random vector k and the desired final elements (a, b) (see
step 9 in Figure 6.5). In that case, since there is only one random vector &, there are
n — 1 undefined variables for each vector a and b, i.e. as,...,a, and by,...,b, that
can be chosen freely. For the VOLE protocol, instead of choosing just one vector k,
Alice randomly chooses a matrix K € Ryxn(F,) of rank k. She then defines vectors
(a',b') € F} x F}! consistent with the final elements (a,b) € F} x FF. That is, Alice has

the following system:

— e —

that can be solved by means of the Gaussian elimination method. Since K € Ryx,(F,),
there will be n — k undefined variables in both vectors a’ and b'. Let U denote the set of
undefined indexes in @’ and b'. Alice randomly chooses @, and b; for i € U and solves the
above equation system. Then, they proceed similarly to the original llqore and execute
the derandomization protocol II{yore((a’,b’), ). Finally, Bob applies Alice’s chosen
matrix K to his output vector y’ to get the final element y. This vectorized extraction

protocol IIygxT is presented in Figure 6.8.
The correctness of the protocol is drawn immediately from linearity:

y=Ky =K(a'z+b)=ax+b.
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Protocol IlyvexT

Alice’s input: (a,b) € F} x F}
Bob’s input: z € F,

1. Alice chooses randomly a matrix K € Ry, (F,) and sends it to Bob.

2. Using the Gaussian elimination method, Alice finds one solution of the system:

Kla b |=|a b

(a) Alice finds the set U of undefined indexes in @’ and b'.
(b) Alice randomly generates aj, b; <5 F, for i € U.

17 71

(c) Alice solves the system for indexes i ¢ U.

3. Alice and Bob run II{yorg((a’,b'),x), where * = (z,...,z). Bob outputs
y €y

4. Bob computes y = Ky'.

Alice’s output: L
Bob’s output: y € F}

Figure 6.8: Extraction protocol for VOLE.

The security of the protocol is constrained by the closeness parameter,

£ = %\/leog ¢—Humin (X|E)

given by Lemma 11, where we consider [ to be k and d to be q. As before, F,/ denotes the

distribution of the II{yoLg pProtocol’s input @’ from Bob’s perspective. From Lemma 11,

since Ryxn(F,) is a two-universal family of hash functions, we know that IC € Ryun(F,)

approximates KF, = F, to uniform conditioned on Bob’s side information. However,

the closeness parameter has to be negligible in the security parameter n, thus setting a
bound on k (the size of VOLE), i.e. for n > 0,

nlogq

(1 — hq(f)) < —nnlogq

k< n(%(l — hy(0)) —?7)-

klogq —
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Since £ > 0, we have that 0 < n < %(1 — hq(C)). This gives a bound on the proportion
of elements that we can extract from n WOLEs and shows how Alice can fix k in the
beginning. Note that this bound is not necessarily optimal, and one could try to improve
it. We leave this as future work, as it goes beyond the scope of this paper, which is to
introduce a quantum protocol for OLE that can be, in turn, adapted accordingly to also
achieve VOLE.

Let us denote by Ilqvore the protocol llqgorLe with the subprotocol Ilygxr instead

of IIgxT. For the security of llqvorg, we have:

Theorem 7 (quantum-UC security of Ilqvorg). The protocol Il govig statistically quantum-
UC realizes (see Definition 6) Fyorg in the Fcoom—hybrid model.

The proof is much the same as the proof of Theorem 4, therefore we omit it.

6.7 Conclusion

OLE is an important primitive for secure two-party computation, and while for stronger
primitives such as bit commitment, OT and coin flipping there is a plethora of both
theoretical as well as concrete protocol proposals [49, 130, 279-293], up until now, there
was no OLE protocol based on quantum communication. In this chapter, we present
two protocols for QOLE. The first protocol is secure against semi-honest adversaries in
the static corruption setting. The second proposed protocol, Ilgorg, builds upon the
semi-honest version and extends it to the dishonest case, following a commit-and-open
approach. We prove this second protocol to be secure in the quantum-UC framework
when assuming ideal commitments, making it possible to be composed in any arbitrary
way. We also constructed two generalizations of our protocol: the first achieves QOLE in
Galois fields of prime-power dimensions and the second is a protocol for quantum vector
OLE. Note that our protocol achieves everlasting security, i.e. it remains information-
theoretically secure after its execution, even if the dishonest party becomes more powerful

in the future.
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Chapter 7
Conclusion

In this thesis, the focus is on exploring and enhancing the utilization of quantum cryp-

tography in secure multiparty computation (SMC) systems.

Chapter 3 provides an overview of quantum oblivious transfer (QOT) protocols. Our
analysis is centered around the use of oblivious keys, which facilitate the modular ex-
ecution of secure multiparty computation (SMC) protocols by allowing the separation
of quantum technology and secure computation. We also examine the threat posed by
quantum hacking techniques and provide an evaluation of both practical and theoretical

measures to mitigate these attacks.

In Chapter 4, we conducted a theoretical comparison of the complexity of quantum and
classical OT protocols to assess their impact on the efficiency of SMC protocols. This is
motivated by the close connection between the Yao garbled circuit protocol and OT. We
proposed an optimized version (IIEBCS) of the BBCS-based QOT protocols and compared
its transfer phase with that of the fastest known classical OT implementation, ALSZ13
[3]. Our conclusion was that the transfer phase of IIBBCS has the potential to be faster
than that of the ALSZ13 OT extension while maintaining a much higher level of security.
In contrast, the ALSZ13 protocol is only proven to be secure in the semi-honest model,
whereas TIBBCS is secure in the malicious setting. Furthermore, we compared the transfer
phase of maliciously secure classical protocols, ALSZ15 [197] and KOS15 [4], with that of
[1BBCS and found that they have a greater computation and communication complexity
than TIEBCS.

In Chapter 5, we bring theory closer to practice by presenting a SMC protocol that
uses quantum technologies to analyse distance-based algorithms of phylogenetic trees. Our
proposed system integrates the use of ready-to-use libraries, such as CBMC-GC, Libscapi,
and PHYLIP, to provide a complete, quantum-resistant solution. We implement and
compare the performance of both a classical-only and a quantum-assisted system using

simulated symmetric and oblivious keys.
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In Chapter 6, we presented a two-phase quantum oblivious linear evaluation (QOLE)
protocol that, to the best of our knowledge, is the first quantum protocol proposed for
this primitive. We establish its security within the quantum-UC framework, under the
assumption of ideal commitments, thereby rendering it amenable to composition in a
versatile manner. Furthermore, we present two generalisations of our protocol: the first
attains QOLE in Galois fields of prime-power dimensions, while the second realizes quan-
tum vector OLE. It’s noteworthy that our protocol achieves everlasting security, ensuring
information-theoretical resilience even in the face of potential future empowerment of

dishonest parties after its execution.

7.1 Future work

Our findings outlined above have implications for both theoretical and practical areas
of research. In terms of practical implementation, one can strive for a more efficient
oblivious key management system. In the future, it would be beneficial to extend the
implementation of Libscapi to include a method to directly access the oblivious keys
stored in memory, potentially increasing efficiency.

In the theoretical realm, the work developed for protocol mqore can be expanded as
well. Currently, its security has been analysed in the absence of noise. Proving security
in the presence of noise would follow a similar approach (as seen in [37]). In case of noise,
during Step 4 of the quantum phase of TqoLr (depicted in Figure 6.5), Alice should abort
the protocol if the error measurement (err) exceeds a pre-defined value v attributed to the
noise. This results in err = v + (’, where (' represents the potential dishonest behavior
of Bob. This adjustment reduces the lower bound of the min-entropy of Alice’s functions

F given Bob’s side information, i.e.

nlogd

Hmin(FlYE)UFYE > (1 - hd(y + C, + C)) :

While it is possible to extend the security of the protocol to include noise in the quantum
states, its correctness cannot be guaranteed in such scenarios. Therefore, as future work,
new protocols should be developed that account for noise and examine its impact on
the security properties. As an initial suggestion, one could build upon existing work.
The error-tolerant OLE combiner from [294] provides a way to integrate several possibly
faulty OLE instances into one correct OLE. Although this protocol ensures the correctness
of the protocol under noise, it does not include a privacy-amplification phase robust
against quantum side information. To bridge this gap, one could strive to apply a linear

strong extractor to each OLE instance [295]. For example, by considering a prime-power
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dimension, d, and the natural correspondence between Zgv and (Zg)*, one could use
the inner product seeded extractor in (Z4)" [296].

The mqore protocol can also be adapted to operate within the bounded-quantum-
storage model, while preserving its security. In this adaptation, the test phase of T{woLr
is replaced by a waiting time At, limiting the amount of qudits that Bob can store.
Further investigation into the impact of different noisy channels on the security properties
of the protocol would be valuable. Additionally, to ensure the protocol’s composability,
an analysis within the bounded-quantum-storage-UC model, as proposed by Unruh [153],
should be performed.

Our protocol is a two-way scheme, in which Bob prepares and sends a quantum state,
Alice performs an operation on it, and returns it to Bob, who finally measures the final
state. There are several two-way QOT protocols in the literature [297-301], with the one
proposed by Amiri et al. [298] demonstrating their experimental feasibility. This drives
the motivation to further develop practical implementations of our protocol. Moreover,
the security of our protocol can be enhanced by making it device-independent. One
can look to the work of Kundu et al. [299] as inspiration, who built upon the work of
Chailloux et al. [300]. While the above-mentioned works primarily focus on two-way
QOT protocols, recent studies have also proposed one-way, non-interactive protocols for
device-independent [177] and XOR QOT [302].

Finally, based on our results, one could construct quantum protocols for oblivious
polynomial evaluation, which — as mentioned in the beginning of Chapter 6 — is another

important primitive facilitating various applications.
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Appendix A

Jukes-Cantor distance for

CBMC-GC

The boolean circuit that represents the Jukes-Cantor distance receives as inputs two
four-based sequences (A, C, G, T') with size 32000. Since we are using a boolean circuit
representation, the nucleotide sequences must be represented in binary. So, by convention,
we use the following 2-bit encoding: A =00, C =01, G =10 and T'= 11. As a result, we
start by defining a sequence type of size 4000 with the unsigned short type elements
(Figure A.1, lines 1 — 5). In fact, the type Array Seq saves 4000 x 16 = 64000 bits.
Each element of Array Seq represents a small sequence of eight elements. This is an
implementation choice that renders a good compromise between accuracy level and circuit

size.

As we saw in the main text, the hamming distance between two binary strings can
then be easily computed by XORing them and counting the number of 1’s. This last
operation is commonly called popcount. We cannot directly apply this approach because
our sequences are in fact four-based sequences. In fact, our version of the popcount
function is only interested in computing the number of 2-bit elements that are different

between both sequences.

We follow a tailored divide-and-conquer technique. The original technique is described
by Henry Warren in his book “Hacker’s Delight”, Chapter 5 [253]. In summary, the
original technique starts by counting in parallel the number of 1’s inside each 2-bit block
and saves it in 2-bit blocks. Then, it adds two 2-bit blocks and saves the result in a 4-bit
block. It continues until we get the final sum. If we follow directly this approach we might
run into wrong results as described in the main text. For our case, instead of counting
the number of 1’s inside every 2-bit block, we only care if there is one element 1 inside
each 2-bit block. This simply indicates that the elements at that site are different. This
is achieved by applying an OR operation (represented by |) to the bits inside each 2-bit
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block (Figure A.1, line 14). For 4-bit blocks and above we follow the same recipe of the
original divide-and-conquer technique.

The main function that computes the Hamming weight between two nucleotide se-
quences INPUT_A and INPUT B is defined by the function mpc_main, line 21. It outputs the
inverse of the hamming weight: total/distance line 37. Since we know the hamming
weight lies between 0 and 1, it renders smaller circuits to use the native integer division
operator, /, from the CBMC-GC tool and then invert the output after the Yao com-
putation. Otherwise, we would need a fixed precision representation to output decimal
numbers.

Below we describe the variables used in the mpc_main function:

e INPUT_A and INPUT B: the binary input sequences of Alice and Bob, respectively.
Following the CBMC-GC convention, the input elements must start with the iden-
tifier INPUT_.

e QUTPUT distance: the inverse of the hamming weight. Following the CBMC-GC

convention, the output element must start with the identifier OUTPUT_.

e total: keeps track of the number of elements that can be compared between aligned

sequences.
e distance: keeps track of the hamming distance between both sequences.

e count_axorb: saves the number of elements that are different in a 16-bit block

sequence (i.e. in INPUT_A.el[i] "INPUT B.el[i]).
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1 #define LEN_SEQ 4000

3 typedef struct {
unsigned short el [LEN_SEQ];
5 } Array_Seq;

7 const
8 const
9 const
10 const

unsigned int ml = 0x55555555; //binary: 0101...
unsigned int m2 = 0x33333333; //binary: 00110011..
unsigned int m4 = 0x0f0f0f0f; //binary: 4 zeros, 4 ones
unsigned int m8 = 0x00ff00ff; //binary: 8 zeros, 8 ones

12 unsigned int popcount (unsigned short INPUT_B_x) {

19 }

unsigned int x = INPUT_B_x;

= (x &ml ) | ((x > 1) & ml ); // changed step
(x & m2 ) + ((x > 2) & m2 );
= (x & md ) + ((x > 4) & md );
= (x & m8 ) + ((x > 8) & m8 );
return Xx;

21 void mpc_main(Array_Seq INPUT_A, Array_Seq INPUT_B)({
unsigned int distance = O0;

int total = O0;

for(int i=0; i<LEN_SEQ; i++){

}

int count_a = popcount (INPUT_A.el[i]);
int count_b
if (count_a > 0 && count_b > 0){

popcount (INPUT_B.el[i]);

int count_axorb = popcount (INPUT_A.el[i] " INPUT_B.el[i]);
if (count_axorb == 1){
distance = distance + 1;
}
total = total + 8;

unsigned int OUTPUT_distance;
if (distance > 0){

OUTPUT_distance = total/distance;

} else {

}

OUTPUT_distance

0;

Figure A.1: Jukes-Cantor distance C code for CBMC-GC boolean circuit generation.
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Appendix B

Proof of Lemma 14 (Dishonest Bob)

As we mentioned in the main text, this proof is a combination and adaptation of results
from [37] and [81] to our case.

To simplify the notation, in this proof we drop the subscript 0 that refers to the
RWOLE phase, e.g. we write Alice’s function vector Fy, simply as F.

Let the values that Bob commits be fixed as (x;,r;) Vi € [m], where m = (1 + t)n and
tn the number of qudits }efl> used in the Test Phase to check whether he is honest or not.
Throughout the proof we denote by = (z1,...,z,,) and 7 = (r1,...,7,) the vectors in
Z7 whose components contain Bob’s commitments Vi € [m], and by X™ = (X1,..., X,,)
the vector of the random variables associated to x;,i € [m]. For each pair (z;,7;), the
corresponding qudit |efl> belongs in the Hilbert space Hx,, and the quantum system
including all the qudits is in Hxm = @
systems in terms of the corresponding random variables X;, instead of the Hilbert spaces
H..

3

Recall that the set T C [m] contains the tn indices of the test qudits, and by T we

ie[m] Hx,. For simplicity, we refer to the quantum

denote its complement [m|\T'. Fori € T', |r is the vector whose components are the bases
x; in which Alice will measure the test qudits, and rl’T is the vector whose components
are Alice’s measurement results. The corresponding quantum system is in the Hilbert
space @), Hx,, which for simplicity we denote as X GZ in terms of the associated random
variables. Finally, rg(-,-) = dg(-,-)/n is the relative Hamming distance between two

vectors of size n, with dy(-,-) being their Hamming distance.

Proof. Let us start by proving property 1. of Lemma 14. After the first step of the protocol
TawoLe (Figure 6.2), the generated state is pxm g, where F is an auxiliary quantum system
that Bob holds. Without loss of generality we assume that pxmp = |oxmp}oxmp|, i€, it
is a pure state.! If Bob is honest, we have that [¢pxmg) = |e) ® |¢g), i.e., Bob’s auxiliary

quantum system FE is not entangled to the states that he sends to Alice.

1Otherwise, we purify it and carry the purification system along with E.
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The Test Phase of the protocol is used to guarantee that the real state is close to an
ideal state that satisfies the properties 1. and 2. of Lemma 14. Let 7’ be the vector whose
components are Alice’s outcomes when measuring the state of X™ in the committed bases
x, and let 7 be the random variable associated to the set of indexes T of size tn. We can

consider the state:
prxme = p1 @ [oxmp)dxmp| = ZPT JITYT| © |oxmpXdxmel, (B.1)

to be the state resulting from the real execution of the protocol, and prove that it is close
to some state, oyrxmpg, that fulfills the following property: for any choice of T" and for
any outcome rl’T when measuring the state of X™ 7 in the bases |7, the relative error
TH(T"’T, r7) is an upper bound on the relative error rH(r"T, 77), which one would obtain
by measuring the remaining subsystems X™ 7 in the bases @7. This state, orxmg, can

be written as:

orxnp = Y, PrT) [TXT| @ |6 ) S| (B.2)
T
where VT,
Fnp) = D allem @ |uF). (B3)

r’eBp

for Br = {r' € Z} : rH(r(T,r‘T*) < rH(r"T,nT) + (} for ¢ > 0 and arbitrary coefficients

T
r’

a’,. The state WE,> is an arbitrary state on E subsystem that possibly depends on r’.

Then we have:

Lemma 19. Let the quantum states prxmp and orxmg be giwen by (B.1) and (B.2),
respectively. Then, Y¢ > 0 and fized strings x,r € ZJ', we have that

PTXME e OTXME,

where €((,n) = €((,n) = exp(—%) . That is, the real state prxmp is exponentially

close, with respect to n, to the ideal state orxmg.

Proof. This proof is an adaptation of the proof of Lemma 4.3 from [37] to our case.

For any T, let ‘gzgﬂm E> be the renormalized projection of |¢pxmg) into the subspace
Span{leZ) : r' € Br} @ Hp,

and let ‘gzg%n E> be the renormalized projection of |¢pymg) into its orthogonal complement.

We can, then, write

’¢XmE> = €r ‘QgﬁmE> )¢XWE>
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with ep = <¢~5§mE‘¢XmE> and €+ = < XmE‘qmeE> By construction, this state satisfies
(B.3).

Furthermore, we can calculate the distance:

3 (joxmesmel[F%ns X Fhms]) = /1 = [(FEn|rme)|| = VI=TerP = el

where, given T, |e7| is the probability amplitude for getting outcome 7’ ¢ Br when

measuring the state of X™ in bases . We continue to derive an upper bound on the
> 2

where we used Jensen’s inequality and properties of the trace norm. The last term is the

distance between the real and the ideal state:

5(PTXmE,UTXmE) = (ZPT (|¢XmE><¢XmE|

< ZPT )er|?,

N &%

probability that, when choosing T according to Pr and measuring the state of X™ in

bases © we get an outcome ' ¢ By. We write
Z Pr(T)|ez|* = Prr[r’ ¢ Br] = Prrlru(rip, viz) — ru(riy, rr) > ¢l.

Then, we can use Lemma 2 which states that the above probability is negligible in n
and gives us an upper bound for 5(p7’Xm E,OTXxm E) In particular, given the set [m] with
(1 + t)n elements, we apply the aforementioned corollary for a random subset T of size
tn and its complement 7 of size n. Denoting by ur and g7, respectively, the averages of

these subsets, we obtain

2 2422
Plur —pr > ¢ < eXp(—(nt +C1t)(7;+ 1))

Hence, we have:

5( ) )<ZP DL < ox (_ 202422 )_.6 (B.4)
PTXmE, OTXmE) < = 7 = o0 (nt+1)(t+1)) 7 .

concluding the proof of Lemma 19, i.e. that the real state (B.1) generated by the protocol
until the Computation Phase is e—close to the ideal state (B.2). ]

It is now straightforward to complete the proof of property 1. of Lemma 14.
To obtain the states opp: and pgp from the states orxmg and prxmg, respectively,

we need to apply the operator V° Trxﬁ E\T[ -JV®T. This operator is a CPTP map, being
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the composition of the two CPTP maps, V.’ and Tr. Since the trace distance between
two density matrices does not increase under CPTP maps (see Lemma 7 in [76]), the final

states indeed satisfy property 1. of Lemma 14, namely

OFB' ~¢ PFB’ -

For the rest of this proof dishonest Bob’s system B’ is identified with Y F, where Y
corresponds to the classical information leaking to him through the output of the WROLE
and F is, in general, a quantum auxiliary system that he might also hold. Consequently,
from now on we write opp: as opyr. Now, we have to prove property 2. of Lemma 14,
i.e., obtain the corresponding lower bound on min-entropy with respect to opyr. We

start with the following Lemma 20:

Lemma 20 (Corollary 4.4 in [37]). Let err :=ry(r(p, mr) < 1— L be the error measured
by Alice while measuring the state of Xl? according to her choice of T, and let oxg =
[V Y|xp be the state to which the ideal state orxmp collapses after this measurement.
Following (B.2) and (B.3), we write [1))xp = > ,cp @z |€Z) [E) for some [vF) and B =
{z€Zy:ru(z,rg) <err+(} with ¢ >0. Then, we have:

Hyin(X|E)oxpy > —halerr + ¢)nlogd, (B.5)
where hq(x) is given in Definition 1.

Proof. We start by defining the state oxp = >, 5|az|? [eZ)eZ]| @ [YE)YE|. Then, by

applying Lemma 5, we obtain
Hyin(X|E)oxp = Huin(X|E)sx, — log |B].
Since ox g is a classical-quantum state, its min-entropy cannot be negative, i.e.
Hyin(X[E)oxn = 0,

thus Hpin(X|E)oxp = — log |B|.
Finally, to get the lower bound shown in (B.5), we apply Lemma 3 to our case, namely
for the Hamming ball around 77 with radius n(err + ¢).
O

To complete the proof of property 2. of Lemma 14 and find a lower bound on
Huin(F|Y E)opyr we need to relate it with Hy,(X|E)

a lower bound. In what follows, we adapt the notation from [81]:

oxps for which we just derived
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o Oxx = |PNP|xx, Where |P)xx =D, |eF)x ®|eZ)x for all basis choices x € Z}}, and

o Diap) = |Piap) X Play)| = oo V212N | VE @ [e2NeZ ], with |Pap)) = (V2 ®
1) [ ). for (a,b) € 22

and we use the following properties of the operators V?, which can be derived from (6.2):
L VY lefXer| VT = |egx—b+i><ega:—b+i|7
= Zj Ca,b,j,x |€§x—b+j> j

bt _ * T T
3. V= jca,b,j,x‘€j><€amfb+j|-

The following lemma, which is an adaptation of Theorem 12 in [81] to our case, provides
a lower bound for H,,;,(F|Y E) in terms of Hp,,(X|E)

OFYE oxE"
Lemma 21. Let X denote our n-qudit system and oxg be the ideal quantum state to

which the system collapsed after Alice’s test measurements, as introduced before. Then,

we have:
Hoia(FIY E)ogys > 5(n108.d+ Hin(X| o).
where
S % S leS, cENet, 3] ® Ve oxcm VI, (B.6)
(a,b)ez2

is the state obtained when V2 is applied to the system X according to F.

Proof. This proof is an adaptation of the proof of Theorem 12 in [81] to our case. Let
us fix z € Zg and write [i) = |e?) for short. V.’ is a CPTP map, and it is known that
the min-entropy does not decrease whenever a CPTP map is applied. However, this is
not enough to prove the security of the protocol and determine a lower bound. We need
a more refined expression relating Hpi, (M (X)|E) and Hpyin(X|E) for some CPTP map
M. This is given by Lemma 6, which can be applied for

MX—)FY = N®n7

where N(ox) = Z(a,b)ezg ./\/'a,bax./\/j,b =5 Z(a,b)ezg (|a, b) ® Vab) ox ( {a,b| ® VabT>.
The operator N applies the operator V to the single system X and saves its choice (a, b)

to a new record in the F' space.
To use Lemma 6, we have to prove that (Mo M)x ® idg)(®xx) can be written as

a linear combination of @44, i.e.

(Mo M)x ®idg)(Pxx) = Z Aa,b)P(ab)-

(a,b)ez2n
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First, note that

Wi =% X (lewyers) gl (e vs)

(a,b)eZ?
1

= Z la,b)a,b| ® lax — b+ i)ax — b+ j], (B.7)
(mb)EZ?I

|~

where we used the property 1. We proceed to compute N o N |i)j|:

NToNiNjl= = Y NiyW i) Naw

(a’ v)ez?

.37 1 /
e“g”g S (@) eV labab
(a’,b'),(a,b)€Z2

® lar — b+ i}ax — b+ j <|a',b'>®Vab/l>
1
28 = Z VP az — b+ iYax — b+ 5| VP

(a,b)eZ?
1

- > Il

(a,b)EZZ
.
— il (B5)

and
(4 2N id5) () = SN 0N () & ks
w2 Z (1ix31) @l
= diz i1 © i

= %(I)XX. (B.9)
Therefore, we have that
((NT oN)x ® idX) (Pxx) = d12 P 0,0), (B.10)
from which we easily see that
(M'oM)x ®idg)(Pxx) = d%¢(070). (B.11)
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Consequently,

z if (a,b) = (0,0)

Aab) =
0 otherwise.

Now, we want to choose the partition that gives us the best lower bound on the collision

entropy, i.e. decreases the r.h.s of the following relation:

o H(FY|Bdoryr < a2 X Eoxs Aap)d"-
< D Ay + ((a%?é, (a,b))
(a,b)eG 1

This is

because the map M is trace-preserving (for a detailed explanation see [81] below Theorem

Note that we dropped the conditioning on the state oxg at Hy(FY|E)

OFYE"

1). For our case there are just two types of partitions: the case where 0 € G, and the
case where 0 € G_. If 0 € G

1 1

hs= A2 XIBoxp — — 9" MXIBoxp <

! S Z d2n -~ _d'fl
(a,b)€6+

The last inequality holds because —nlogd < Hy(X|E)yy, < nlogd. In fact,

OXE

LQsz(XIE)JXE < d—ln e 2 HXlBoxp < g0 e Hy(X|E)

Jon > —nlogd.

OXE
f0e&_ ,rhs= din which, as we have just seen by the previous inequality, does not

provide a better lower bound on the collision entropy whenever Hy(X|E),5, # —nlogd.

So, choosing any partition such that 0 € &, we get

1
0 Ha(FY|B)opy ;< Z Ay gy 2 T2 X B)oxcs Mgy )d" = 2 Ha(XIB)ox
_( b)e6 o * ((aflrzl)%}éf (@0) dn ’
a, +

from which we conclude that

Hy(FY|E)ypy, > 2nlogd + Hay(X|E) (B.12)

OXE"*

In order to relate Hy(FY |E),py, with Hy(F|YE)

Lemma 7:

opy s We use the chain rule given by

Hy(F|YE) > Ho(FY|E)oppyy — logrank(oy) > Ho(FY|E) —nlogd, (B.13)

OFYE OFYE

since logrank(oy) < nlogd. Combining (B.12) and (B.13), we get the desired result:

Hy(F|Y E)ypy, > nlogd + Hy(X|E)

OXE"
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To express the above relation in terms of the min-entropy instead of the collision entropy,

we start by noticing that the state given in (B.6) can be written as

1 1 a
OFYE = % Z ]a, b><a7 b’ ® V: OXE Vab]L = % Z |CL, b><a’7 b’ ® UX%? <B14)

(a,b)ez™ (a,b)ez™

which is a classical-quantum state. Therefore, we can use Lemma 18 from [81] to obtain
Hoin (F|Y E)opy s > % (nlogd + Ha(X|E)gy,) -

Furthermore, oxg is a general quantum state, and from Lemma 17 in [81] we have
Ha (I B) oy 2 5 (010804 Hy (K| B

]

To complete the proof of property 2. of Lemma 14, we combine Lemma 20 and

Lemma 21 and obtain:

nlogd
2

Hain(FIY E)ogyy > 3 (nlogd — ha(Qnlogd) = 21— h(0)),

for err = 0.
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